
W. Ford Doolittle. Phylogenetic Classification and the Universal Tree. In Science, Vol. 284:21242128, 1999. Note: http://cas.bellarmine.edu/tietjen/Ecology/phylogenetic_classification_and_.htm.
Toggle abstract
"From comparative analyses of the nucleotide sequences of genes encoding ribosornal RNAs and several proteins, molecular phylogeneticists have constructed a 'universal tree of life,' taking it as the basis for a 'natural' hierarchical classification of all living things. Although confidence in some of the tree s early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If 'chimerism' or 'lateral gene transfer' cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the 'true tree,' not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished."



Bin Ma,
Lusheng Wang and
Ming Li. Fixed topology alignment with recombination. In CPM98, Vol. 1448:174188 of LNCS, springer, 1998. Keywords: approximation, explicit network, from network, from sequences, galled tree, inapproximability, phylogenetic network, phylogeny, recombination. Note: http://dx.doi.org/10.1007/BFb0030789.







Roderic D.M. Page and
Michael A. Charleston. Trees within trees: phylogeny and historical associations. In TEE, Vol. 13(9):356359, 1998. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, phylogenetic network, phylogeny, reconstruction, survey. Note: http://taxonomy.zoology.gla.ac.uk/rod/papers/tree.pdf.













Andreas W. M. Dress,
Daniel H. Huson and
Vincent Moulton. Analyzing and visualizing distance data using SplitsTree. In DAM, Vol. 71(1):95109, 1996. Keywords: abstract network, from distances, phylogenetic network, phylogeny, Program SplitsTree, software, split network, visualization. Note: http://bibiserv.techfak.unibielefeld.de/splits/splits.pdf.















HansJürgen Bandelt and
Andreas W. M. Dress. A relational approach to split decomposition. In
H.H. Bock,
W. Lenski and
M. M. Richter editors, Information Systems and Data Analysis, Proceedings of the 17th Annual Conference of the Gesellschaft Für Klassifikation (GFKL93), Vol. 42:123131 of Studies in Classification, Data Analysis, and Knowledge Organization, springer, 1994. Keywords: characterization, from quartets, phylogenetic network, weakly compatible.





HansJürgen Bandelt. Phylogenetic Networks. In Verhandlungen des Naturwissenschaftlichen Vereins Hamburg, Vol. 34:5171, 1994.





HansJürgen Bandelt and
Andreas W. M. Dress. An order theoretic framework for overlapping clustering. In DM, Vol. 136(13):2137, 1994.
Toggle abstract
"Cluster analysis deals with procedures which  given a finite collection X of objects together with some kind of local dissimilarity information  identify those subcollections C of objects from X, called clusters, which exhibit a comparatively low degree of internal dissimilarity. In this note we study arbitrary mappings φ which assign to each subcollection A ⊆ X of objects its internal degree of dissimilarity φ (A), subject only to the natural condition that A ⊆ B ⊆ X implies φ (A) ̌ φ (B), and we analyse on a rather abstract, purely order theoretic level how assumptions concerning the way such a mapping φ might be constructed from local data (that is, data involving only a few objects at a time) influence the degree of overlapping observed within the resulting family of clusters,  and vice versa. Hence, unlike previous order theoretic approaches to cluster analysis, we do not restrict our attention to nonoverlapping, hierarchical clustering. Instead, we regard a dissimilarity function φ as an arbitrary isotone mapping from a finite partially ordered set I  e.g. the set P(X) of all subsets A of a finite set X  into a (partially) ordered set R  e.g. the nonnegative real numbers  and we study the correspondence between the two subsets C(φ) and D(φ) of I, formed by the elements whose images are inaccessible from above and from below, respectively. While D(φ) constitutes the local data structure from which φ can be built up, C(φ) embodies the family of clusters associated with φ. Our results imply that in case I: = P(X) and R: = R≥0 one has # D ̌ n for all Dε{lunate}D(φ) and some fixed nε{lunate}N if and only if{A figure is presented} for all C0,..., Cnε{lunate}C(φ) if and only if this holds for all subsets C0,..., Cn ⊆ X, generalizing a wellknown criterion for nconformity of hypergraphs as well as corresponding results due to Batbedat, dealing with the case n = 2. © 1994."







Jotun Hein. A heuristic method to reconstruct the history of sequences subject to recombination. In JME, Vol. 36(4):396405, 1993. Keywords: explicit network, from sequences, heuristic, parsimony, phylogenetic network, phylogeny, Program RecPars, recombination, recombination detection, software. Note: http://dx.doi.org/10.1007/BF00182187.







HansJürgen Bandelt and
Andreas W. M. Dress. A canonical decomposition theory for metrics on a finite set. In Advances in Mathematics, Vol. 92(1):47105, 1992. Keywords: abstract network, circular split system, from distances, split, split decomposition, split network, weak hierarchy, weakly compatible.
Toggle abstract
"We consider specific additive decompositions d = d1 + ... + dn of metrics, defined on a finite set X (where a metric may give distance zero to pairs of distinct points). The simplest building stones are the slit metrics, associated to splits (i.e., bipartitions) of the given set X. While an additive decomposition of a Hamming metric into split metrics is in no way unique, we achieve uniqueness by restricting ourselves to coherent decompositions, that is, decompositions d = d1 + ... + dn such that for every map f:X → R with f(x) + f(y) ≥ d(x, y) for all x, y ε{lunate} X there exist maps f1, ..., fn: X → R with f = f1 + ... + fn and fi(x) + fi(y) ≥ di(x, y) for all i = 1,..., n and all x, y ε{lunate} X. These coherent decompositions are closely related to a geometric decomposition of the injective hull of the given metric. A metric with a coherent decomposition into a (weighted) sum of split metrics will be called totally splitdecomposable. Tree metrics (and more generally, the sum of two tree metrics) are particular instances of totally splitdecomposable metrics. Our main result confirms that every metric admits a coherent decomposition into a totally splitdecomposable metric and a splitprime residue, where all the split summands and hence the decomposition can be determined in polynomial time, and that a family of splits can occur this way if and only if it does not induce on any fourpoint subset all three splits with block size two. © 1992."






