




Lavanya Kannan and
Ward C Wheeler. Exactly Computing the Parsimony Scores on Phylogenetic Networks Using Dynamic Programming. In JCB, Vol. 21(4):303319, 2014. Keywords: explicit network, exponential algorithm, from network, from sequences, parsimony, phylogenetic network, phylogeny, reconstruction.
Toggle abstract
"Scoring a given phylogenetic network is the first step that is required in searching for the best evolutionary framework for a given dataset. Using the principle of maximum parsimony, we can score phylogenetic networks based on the minimum number of state changes across a subset of edges of the network for each character that are required for a given set of characters to realize the input states at the leaves of the networks. Two such subsets of edges of networks are interesting in light of studying evolutionary histories of datasets: (i) the set of all edges of the network, and (ii) the set of all edges of a spanning tree that minimizes the score. The problems of finding the parsimony scores under these two criteria define slightly different mathematical problems that are both NPhard. In this article, we show that both problems, with scores generalized to adding substitution costs between states on the endpoints of the edges, can be solved exactly using dynamic programming. We show that our algorithms require O(mpk) storage at each vertex (per character), where k is the number of states the character can take, p is the number of reticulate vertices in the network, m = k for the problem with edge set (i), and m = 2 for the problem with edge set (ii). This establishes an O(nmpk2) algorithm for both the problems (n is the number of leaves in the network), which are extensions of Sankoff's algorithm for finding the parsimony scores for phylogenetic trees. We will discuss improvements in the complexities and show that for phylogenetic networks whose underlying undirected graphs have disjoint cycles, the storage at each vertex can be reduced to O(mk), thus making the algorithm polynomial for this class of networks. We will present some properties of the two approaches and guidance on choosing between the criteria, as well as traverse through the network space using either of the definitions. We show that our methodology provides an effective means to study a wide variety of datasets. © Copyright 2014, Mary Ann Liebert, Inc. 2014."





ZhiZhong Chen and
Lusheng Wang. An Ultrafast Tool for Minimum Reticulate Networks. In JCB, Vol. 20(1):3841, 2013. Keywords: agreement forest, explicit network, from rooted trees, phylogenetic network, phylogeny, Program ultraNet, reconstruction. Note: http://www.cs.cityu.edu.hk/~lwang/research/jcb2013.pdf.
Toggle abstract
"Due to hybridization events in evolution, studying different genes of a set of species may yield two or more related but different phylogenetic trees for the set of species. In this case, we want to combine the trees into a reticulate network with the fewest hybridization events. In this article, we develop a software tool (named UltraNet) for several fundamental problems related to the construction of minimum reticulate networks from two or more phylogenetic trees. Our experimental results show that UltraNet is much faster than all previous tools for these problems. © 2013 Mary Ann Liebert, Inc."



Mukul S. Bansal,
Eric J. Alm and
Manolis Kellis. Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss. In JCB, Vol. 20(10):738754, 2013. Keywords: duplication, from rooted trees, from species tree, loss, phylogenetic network, phylogeny, Program RANGERDTL, reconstruction. Note: http://www.engr.uconn.edu/~mukul/Bansal_JCB2013.pdf.
Toggle abstract
"Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While duplicationloss (DL) reconciliation leads to a unique maximumparsimony solution, duplicationtransferloss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult to infer the true evolutionary history of the gene family. This problem is further exacerbated by the fact that different event cost assignments yield different sets of optimal reconciliations. Here, we present an effective, efficient, and scalable method for dealing with these fundamental problems in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We show that even gene trees with only a few dozen genes often have millions of optimal reconciliations and present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn 2) time per sample, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mappings and event assignments and to investigate the impact of varying event costs. We apply our method to a biological dataset of approximately 4700 gene trees from 100 taxa and observe that 93% of event assignments and 73% of mappings remain consistent across different multiple optima. Our analysis represents the first systematic investigation of the space of optimal DTL reconciliations and has many important implications for the study of gene family evolution. © 2013 Mary Ann Liebert, Inc."





Celine Scornavacca,
Simone Linz and
Benjamin Albrecht. A first step towards computing all hybridization networks for two rooted binary phylogenetic trees. In JCB, Vol. 19:12271242, 2012. Keywords: agreement forest, explicit network, FPT, from rooted trees, phylogenetic network, phylogeny, Program Dendroscope, Program Hybroscale, reconstruction. Note: http://arxiv.org/abs/1109.3268.
Toggle abstract
"Recently, considerable effort has been put into developing fast algorithms to reconstruct a rooted phylogenetic network that explains two rooted phylogenetic trees and has a minimum number of hybridization vertices. With the standard app1235roach to tackle this problem being combinatorial, the reconstructed network is rarely unique. From a biological point of view, it is therefore of importance to not only compute one network, but all possible networks. In this article, we make a first step toward approaching this goal by presenting the first algorithmcalled allMAAFsthat calculates all maximumacyclicagreement forests for two rooted binary phylogenetic trees on the same set of taxa. © Copyright 2012, Mary Ann Liebert, Inc. 2012."



Bonnie Kirkpatrick,
Yakir Reshef,
Hilary Finucane,
Haitao Jiang,
Binhai Zhu and
Richard M. Karp. Comparing Pedigree Graphs. In JCB, Vol. 19(9):9981014, 2012. Keywords: distance between networks, from network, pedigree. Note: http://arxiv.org/abs/1009.0909, preliminary version as poster at WABI 2010.
Toggle abstract
"Pedigree graphs, or family trees, are typically constructed by an expensive process of examining genealogical records to determine which pairs of individuals are parent and child. New methods to automate this process take as input genetic data from a set of extant individuals and reconstruct ancestral individuals. There is a great need to evaluate the quality of these methods by comparing the estimated pedigree to the true pedigree. In this article, we consider two main pedigree comparison problems. The first is the pedigree isomorphism problem, for which we present a lineartime algorithm for leaflabeled pedigrees. The second is the pedigree edit distance problem, for which we present (1) several algorithms that are fast and exact in various special cases, and (2) a general, randomized heuristic algorithm. In the negative direction, we first prove that the pedigree isomorphism problem is as hard as the general graph isomorphism problem, and that the subpedigree isomorphism problem is NPhard. We then show that the pedigree edit distance problem is APXhard in general and NPhard on leaflabeled pedigrees. We use simulated pedigrees to compare our editdistance algorithms to each other as well as to a branchandbound algorithm that always finds an optimal solution. © 2012, Mary Ann Liebert, Inc."



Josh Voorkamp né Collins,
Simone Linz and
Charles Semple. Quantifying hybridization in realistic time. In JCB, Vol. 18(10):13051318, 2011. Keywords: explicit network, FPT, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, Program HybridInterleave, reconstruction, software. Note: http://wwwcsif.cs.ucdavis.edu/~linzs/CLS10_interleave.pdf, software available at http://www.math.canterbury.ac.nz/~c.semple/software.shtml.
Toggle abstract
"Recently, numerous practical and theoretical studies in evolutionary biology aim at calculating the extent to which reticulationfor example, horizontal gene transfer, hybridization, or recombinationhas influenced the evolution for a set of presentday species. It has been shown that inferring the minimum number of hybridization events that is needed to simultaneously explain the evolutionary history for a set of trees is an NPhard and also fixedparameter tractable problem. In this article, we give a new fixedparameter algorithm for computing the minimum number of hybridization events for when two rooted binary phylogenetic trees are given. This newly developed algorithm is based on interleavinga technique using repeated kernelization steps that are applied throughout the exhaustive search part of a fixedparameter algorithm. To show that our algorithm runs efficiently to be applicable to a wide range of practical problem instances, we apply it to a grass data set and highlight the significant improvements in terms of running times in comparison to an algorithm that has previously been implemented. © 2011, Mary Ann Liebert, Inc."



Lavanya Kannan,
Hua Li and
Arcady Mushegian. A PolynomialTime Algorithm Computing Lower and Upper Bounds of the Rooted Subtree Prune and Regraft Distance. In JCB, Vol. 18(5):743757, 2011. Keywords: bound, minimum number, polynomial, SPR distance. Note: http://dx.doi.org/10.1089/cmb.2010.0045.
Toggle abstract
"Rooted, leaflabeled trees are used in biology to represent hierarchical relationships of various entities, most notably the evolutionary history of molecules and organisms. Rooted Subtree Prune and Regraft (rSPR) operation is a tree rearrangement operation that is used to transform a tree into another tree that has the same set of leaf labels. The minimum number of rSPR operations that transform one tree into another is denoted by drSPR and gives a measure of dissimilarity between the trees, which can be used to compare trees obtained by different approaches, or, in the context of phylogenetic analysis, to detect horizontal gene transfer events by finding incongruences between trees of different evolving characters. The problem of computing the exact d rSPR measure is NPhard, and most algorithms resort to finding sequences of rSPR operations that are sufficient for transforming one tree into another, thereby giving upper bound heuristics for the distance. In this article, we present an O(n4) recursive algorithm DClust that gives both lower bound and upper bound heuristics for the distance between trees with n shared leaves and also gives a sequence of operations that transforms one tree into another. Our experiments on simulated pairs of trees containing up to 100 leaves showed that the two bounds are almost equal for small distances, thereby giving the nearlyprecise actual value, and that the upper bound tends to be close to the upper bounds given by other approaches for all pairs of trees. © Copyright 2011, Mary Ann Liebert, Inc. 2011."



Mukul S. Bansal,
Guy Banay,
J. Peter Gogarten and
Ron Shamir. Detecting Highways of Horizontal Gene Transfer. In JCB, Vol. 18(9):10871114, 2011. Keywords: explicit network, from rooted trees, from species tree, lateral gene transfer, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://people.csail.mit.edu/mukul/HighwayFull_preprint.pdf.
Toggle abstract
"In a horizontal gene transfer (HGT) event, a gene is transferred between two species that do not have an ancestordescendant relationship. Typically, no more than a few genes are horizontally transferred between any two species. However, several studies identified pairs of species between which many different genes were horizontally transferred. Such a pair is said to be linked by a highway of gene sharing. We present a method for inferring such highways. Our method is based on the fact that the evolutionary histories of horizontally transferred genes disagree with the corresponding species phylogeny. Specifically, given a set of gene trees and a trusted rooted species tree, each gene tree is first decomposed into its constituent quartet trees and the quartets that are inconsistent with the species tree are identified. Our method finds a pair of species such that a highway between them explains the largest (normalized) fraction of inconsistent quartets. For a problem on n species and m input quartet trees, we give an efficient O(m+n 2)time algorithm for detecting highways, which is optimal with respect to the quartets input size. An application of our method to a dataset of 1128 genes from 11 cyanobacterial species, as well as to simulated datasets, illustrates the efficacy of our method. © 2011, Mary Ann Liebert, Inc."



Frederick A. Matsen. ConstNJ: an algorithm to reconstruct sets of phylogenetic trees satisfying pairwise topological constraints. In JCB, Vol. 17(6):799818, 2010. Keywords: from distances, Program constNJ, reconstruction. Note: http://arxiv.org/abs/0901.1598v2.
Toggle abstract
"This article introduces constNJ (constrained neighborjoining), an algorithm for phylogenetic reconstruction of sets of trees with constrained pairwise rooted subtreepruneregraft (rSPR) distance. We are motivated by the problem of constructing sets of trees that must fit into a recombination, hybridization, or similar network. Rather than first finding a set of trees that are optimal according to a phylogenetic criterion (e.g., likelihood or parsimony) and then attempting to fit them into a network, constNJ estimates the trees while enforcing specified rSPR distance constraints. The primary input for constNJ is a collection of distance matrices derived from sequence blocks which are assumed to have evolved in a treelike manner, such as blocks of an alignment which do not contain any recombination breakpoints. The other input is a set of rSPR constraint inequalities for any set of pairs of trees. constNJ is consistent and a strict generalization of the neighborjoining algorithm; it uses the new notion of maximum agreement partitions (MAPs) to assure that the resulting trees satisfy the given rSPR distance constraints. Copyright 2010, Mary Ann Liebert, Inc."





Sagi Snir and
Edward Trifonov. A Novel Technique for Detecting Putative Horizontal Gene Transfer in the Sequence Space. In JCB, Vol. 17(11):15351548, 2010. Keywords: from sequences, phylogenetic network, phylogeny, reconstruction. Note: http://research.haifa.ac.il/~ssagi/published%20papers/JCBHGT.pdf.
Toggle abstract
"Horizontal transfer (HT) is the event of a DNA sequence being transferred between species not by inheritance. This phenomenon violates the treelike evolution of the species under study turning the trees into networks. At the sequence level, HT offers basic characteristics that enable not only clear identification and distinguishing from other sequence similarity cases but also the possibility of dating the events. We developed a novel, selfcontained technique to identify relatively recent horizontal transfer elements (HTEs) in the sequences. Appropriate formalism allows one to obtain confidence values for the events detected. The technique does not rely on such problematic prerequisites as reliable phylogeny and/or statistically justified pairwise sequence alignment. In conjunction with the unique properties of HT, it gives rise to a twolevel sequence similarity algorithm that, to the best of our knowledge, has not been explored. From evolutionary perspective, the novelty of the work is in the combination of small scale and large scale mutational events. The technique is employed on both simulated and real biological data. The simulation results show high capability of discriminating between HT and conserved regions. On the biological data, the method detected documented HTEs along with their exact locations in the recipient genomes. Supplementary Material is available online at www.libertonline.com/cmb. Copyright 2010, Mary Ann Liebert, Inc."



Ran LibeskindHadas and
Michael A. Charleston. On the Computational Complexity of the Reticulate Cophylogeny Reconstruction Problem. In JCB, Vol. 16(1):105117, 2009. Keywords: cophylogeny, heuristic, NP complete, parsimony, phylogenetic network, reconstruction. Note: http://dx.doi.org/10.1089/cmb.2008.0084.
Toggle abstract
"The cophylogeny reconstruction problem is that of finding minimal cost explanations of differences between evolutionary histories of ecologically linked groups of biological organisms. We present a proof that shows that the general problem of reconciling evolutionary histories is NPcomplete and provide a sharp boundary where this intractability begins. We also show that a related problem, that of finding Pareto optimal solutions, is NPhard. As a byproduct of our results, we give a framework by which metaheuristics can be applied to find good solutions to this problem. © Mary Ann Liebert, Inc. 2009."



Dan Gusfield,
Vikas Bansal,
Vineet Bafna and
Yun S. Song. A Decomposition Theory for Phylogenetic Networks and Incompatible Characters. In JCB, Vol. 14(10):12471272, 2007. Keywords: explicit network, from sequences, galled tree, phylogenetic network, phylogeny, Program Beagle, Program GalledTree, recombination, reconstruction, software. Note: http://www.eecs.berkeley.edu/~yss/Pub/decomposition.pdf.



Yun S. Song,
Zhihong Ding,
Dan Gusfield,
Charles Langley and
Yufeng Wu. Algorithms to Distinguish the Role of GeneConversion from SingleCrossover Recombination in the Derivation of SNP Sequences in Populations. In JCB, Vol. 14(10):12731286, 2007. Keywords: ARG, from sequences, phylogenetic network, phylogeny, Program SHRUB, reconstruction. Note: http://dx.doi.org/10.1089/cmb.2007.0096.
Toggle abstract
"Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several critical applied problems. The most important example is "association mapping" in populations, which is widely hoped to help find genes that influence genetic diseases (Carlson et al., 2004; Clark, 2003). Hence, a great deal of recent attention has focused on problems of inferring the historical derivation of sequences in populations when both mutations and recombinations have occurred. In the algorithms literature, most of that recent work has been directed to singlecrossover recombination. However, geneconversion is an important, and more common, form of (twocrossover) recombination which has been much less investigated in the algorithms literature. In this paper, we explicitly incorporate geneconversion into discrete methods to study historical recombination. We are concerned with algorithms for identifying and locating the extent of historical crossingover and geneconversion (along with singlenucleotide mutation), and problems of constructing full putative histories of those events. The novel technical issues concern the incorporation of geneconversion into recently developed discrete methods (Myers and Griffiths, 2003; Song et al., 2005) that compute lower and upperbound information on the amount of needed recombination without geneconversion. We first examine the most natural extension of the lower bound methods from Myers and Griffiths (2003), showing that the extension can be computed efficiently, but that this extension can only yield weak lower bounds. We then develop additional ideas that lead to higher lower bounds, and show how to solve, via integerlinear programming, a more biologically realistic version of the lower bound problem. We also show how to compute effective upper bounds on the number of needed singlecrossovers and geneconversions, along with explicit networks showing a putative history of mutations, singlecrossovers and geneconversions. Both lower and upper bound methods can handle data with missing entries, and the upper bound method can be used to infer missing entries with high accuracy. We validate the significance of these methods by showing that they can be effectively used to distinguish simulationderived sequences generated without geneconversion from sequences that were generated with geneconversion. We apply the methods to recently studied sequences of Arabidopsis thaliana, identifying many more regions in the sequences than were previously identified (Plagnol et al., 2006), where geneconversion may have played a significant role. Demonstration software is available at www.csif.cs.ucdavis.edu/∼gusfield. © 2007 Mary Ann Liebert, Inc."



Cuong Than,
Derek Ruths,
Hideki Innan and
Luay Nakhleh. Confounding Factors in HGT Detection: Statistical Error, Coalescent Effects, and Multiple Solutions. In JCB, Vol. 14(4):517535, 2007. Keywords: counting, explicit network, from rooted trees, from species tree, lateral gene transfer, phylogenetic network, phylogeny, Program LatTrans, Program PhyloNet. Note: http://www.cs.rice.edu/~nakhleh/Papers/recombcg06jcb.pdf.



Luay Nakhleh,
Tandy Warnow,
C. Randal Linder and
Katherine St. John. Reconstructing reticulate evolution in species  theory and practice. In JCB, Vol. 12(6):796811, 2005. Keywords: from rooted trees, galled tree, phylogenetic network, phylogeny, polynomial, Program SPNet, reconstruction, software. Note: http://www.cs.rice.edu/~nakhleh/Papers/NWLSjcb.pdf.








