
Jesper Jansson,
Ramesh Rajaby and
WingKin Sung. An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees. In AlCoB17, Vol. 10252:115126 of LNCS, Springer, 2017. Keywords: distance between networks, from network, phylogenetic network, phylogeny, polynomial, reconstruction, triplet distance. Note: .



Andreas Gunawan,
Bhaskar DasGupta and
Louxin Zhang. Locating a Tree in a ReticulationVisible Network in Cubic Time. In RECOMB2016, Vol. 9649:266 of LNBI, Springer, 2016. Keywords: cluster containment, explicit network, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: http://arxiv.org/abs/1507.02119.



Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time. In IWOCA15, Vol. 9538:197208 of LNCS, springer, 2016. Keywords: explicit network, from network, from rooted trees, genetically stable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://halupecupem.archivesouvertes.fr/hal01226035 .









Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Locating a Tree in A Phylogenetic Network in Quadratic Time. In RECOMB15, Vol. 9029:96107 of LNCS, Springer, 2015. Keywords: evaluation, explicit network, from network, from rooted trees, genetically stable network, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://hal.archivesouvertes.fr/hal01116231/en.





Quan Nguyen and
Teemu Roos. Likelihoodbased inference of phylogenetic networks from sequence data by PhyloDAG. In ALCOB15, Vol. 9199:126140 of LNCS, springer, 2015. Keywords: BIC, explicit network, from sequences, likelihood, phylogenetic network, phylogeny, Program PhyloDAG, reconstruction, software. Note: http://www.cs.helsinki.fi/u/ttonteri/pub/alcob2015.pdf.





Jittat Fakcharoenphol,
Tanee Kumpijit and
Attakorn Putwattana. A Faster Algorithm for the Tree Containment Problem for Binary Nearly Stable Phylogenetic Networks. In Proceedings of the The 12th International Joint Conference on Computer Science and Software Engineering (JCSSE'15), Pages 337342, IEEE, 2015. Keywords: dynamic programming, explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment.



Misagh Kordi and
Mukul S. Bansal. On the Complexity of DuplicationTransferLoss Reconciliation with NonBinary Gene Trees. In ISBRA15, Vol. 9096:187198 of LNCS, springer, 2015. Keywords: duplication, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, phylogenetic network, phylogeny, reconstruction. Note: http://compbio.engr.uconn.edu/papers/Kordi_ISBRA2015.pdf.



Yun Yu and
Luay Nakhleh. A DistanceBased Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378389 of LNCS, springer, 2015. Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction. Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhlehISBRA15.pdf.





Leo van Iersel and
Steven Kelk. Kernelizations for the hybridization number problem on multiple nonbinary trees. In WG14, Vol. 8747:299311 of LNCS, springer, 2014. Keywords: explicit network, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Treeduce, reconstruction. Note: http://arxiv.org/abs/1311.4045.



Ran LibeskindHadas,
YiChieh Wu,
Mukul S. Bansal and
Manolis Kellis. Paretooptimal phylogenetic tree reconciliation. In ISMB14, Vol. 30:i87i95 of BIO, 2014. Keywords: duplication, lateral gene transfer, loss, phylogenetic network, phylogeny, polynomial, Program Xscape, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/btu289.
Toggle abstract
"Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Paretooptimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. © 2014 The Author. Published by Oxford University Press. All rights reserved."



Kevin J. Liu,
Jingxuan Dai,
Kathy Truong,
Ying Song,
Michael H. Kohn and
Luay Nakhleh. An HMMBased Comparative Genomic Framework for Detecting Introgression in Eukaryotes. In PLoS ONE, Vol. 10(6):e1003649, 2014. Keywords: explicit network, from network, phylogenetic network, phylogeny, Program PhyloNetHMM. Note: http://arxiv.org/abs/1310.7989.
Toggle abstract
"One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNetHMMa new comparative genomic framework for detecting introgression in genomes. PhyloNetHMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism. © 2014 Liu et al."



YiChieh Wu. Computational evolutionary genomics : phylogenomic models spanning domains, genes, individuals, and species. PhD thesis, Massachusetts Institute of Technology, U.S.A., 2014. Keywords: duplication, from sequences, from species tree, lateral gene transfer, loss, phylogeny, Program TreeFixDTL, reconstruction. Note: http://hdl.handle.net/1721.1/87937.



Yufeng Wu. An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees. In RECOMB13, Vol. 7821:291303 of LNCS, springer, 2013. Keywords: explicit network, exponential algorithm, from rooted trees, phylogenetic network, phylogeny, Program PIRN, reconstruction. Note: http://www.engr.uconn.edu/~ywu/Papers/ExactNetRecomb2013.pdf.
Toggle abstract
"Phylogenetic network is a model for reticulate evolution. Hybridization network is one type of phylogenetic network for a set of discordant gene trees, and "displays" each gene tree. A central computational problem on hybridization networks is: given a set of gene trees, reconstruct the minimum (i.e. most parsimonious) hybridization network that displays each given gene tree. This problem is known to be NPhard, and existing approaches for this problem are either heuristics or make simplifying assumptions (e.g. work with only two input trees or assume some topological properties). In this paper, we develop an exact algorithm (called PIRNC ) for inferring the minimum hybridization networks from multiple gene trees. The PIRNC algorithm does not rely on structural assumptions. To the best of our knowledge, PIRN C is the first exact algorithm for this formulation. When the number of reticulation events is relatively small (say four or fewer), PIRNC runs reasonably efficient even for moderately large datasets. For building more complex networks, we also develop a heuristic version of PIRNC called PIRNCH. Simulation shows that PIRNCH usually produces networks with fewer reticulation events than those by an existing method. © 2013 SpringerVerlag."



Mukul S. Bansal,
Eric J. Alm and
Manolis Kellis. Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss. In RECOMB13, Vol. 7821:113 of LNCS, springer, 2013. Keywords: duplication, from rooted trees, from species tree, loss, phylogenetic network, phylogeny, polynomial, Program RANGERDTL, reconstruction. Note: http://people.csail.mit.edu/mukul/Bansal_RECOMB2013.pdf.
Toggle abstract
"Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While DuplicationLoss (DL) reconciliation leads to a unique maximumparsimony solution, DuplicationTransferLoss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult the infer the true evolutionary history of the gene family. Here, we present an effective, efficient, and scalable method for dealing with this fundamental problem in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn 2) time, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mapping and event assignments, and to investigate the impact of varying event costs. © 2013 SpringerVerlag."



Hoa Vu,
Francis Chin,
WingKai Hon,
Henry Leung,
Kunihiko Sadakane,
WingKin Sung and
SiuMing Yiu. Reconstructing kReticulated Phylogenetic Network from a Set of Gene Trees. In ISBRA13, Vol. 7875:112124 of LNCS, springer, 2013. Keywords: from rooted trees, kreticulated, phylogenetic network, phylogeny, polynomial, Program ARTNET, Program CMPT, reconstruction. Note: http://grid.cs.gsu.edu/~xguo9/publications/2013_Cloud%20computing%20for%20de%20novo%20metagenomic%20sequence%20assembly.pdf#page=123.
Toggle abstract
"The time complexity of existing algorithms for reconstructing a levelx phylogenetic network increases exponentially in x. In this paper, we propose a new classification of phylogenetic networks called kreticulated network. A kreticulated network can model all levelk networks and some levelx networks with x > k. We design algorithms for reconstructing kreticulated network (k = 1 or 2) with minimum number of hybrid nodes from a set of m binary trees, each with n leaves in O(mn 2) time. The implication is that some levelx networks with x > k can now be reconstructed in a faster way. We implemented our algorithm (ARTNET) and compared it with CMPT. We show that ARTNET outperforms CMPT in terms of running time and accuracy. We also consider the case when there does not exist a 2reticulated network for the input trees. We present an algorithm computing a maximum subset of the species set so that a new set of subtrees can be combined into a 2reticulated network. © 2013 SpringerVerlag."





Steven Kelk,
Leo van Iersel,
Nela Lekic,
Simone Linz,
Celine Scornavacca and
Leen Stougie. Cycle killer... qu'estce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set. In SIDMA, Vol. 26(4):16351656, 2012. Keywords: agreement forest, approximation, explicit network, from rooted trees, minimum number, phylogenetic network, phylogeny, Program CycleKiller, reconstruction. Note: http://arxiv.org/abs/1112.5359, about the title.
Toggle abstract
"We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa X has a constant factor polynomialtime approximation if and only if the problem of computing a minimumsize feedback vertex set in a directed graph (DFVS) has a constant factor polynomialtime approximation. The latter problem, which asks for a minimum number of vertices to be removed from a directed graph to transform it into a directed acyclic graph, is one of the problems in Karp's seminal 1972 list of 21 NPcomplete problems. Despite considerable attention from the combinatorial optimization community, it remains to this day unknown whether a constant factor polynomialtime approximation exists for DFVS. Our result thus places the (in)approximability of hybridization number in a much broader complexity context, and as a consequence we obtain that it inherits inapproximability results from the problem Vertex Cover. On the positive side, we use results from the DFVS literature to give an O(log r log log r) approximation for the hybridization number where r is the correct value. Copyright © by SIAM."



Hyun Jung Park and
Luay Nakhleh. MURPAR: A fast heuristic for inferring parsimonious phylogenetic networks from multiple gene trees. In ISBRA12, Vol. 7292:213224 of LNCS, springer, 2012. Keywords: explicit network, from unrooted trees, heuristic, phylogenetic network, phylogeny, reconstruction, software. Note: https://www.researchgate.net/profile/Hyun_Jung_Park2/publication/262318595_MURPAR_A_Fast_Heuristic_for_Inferring_Parsimonious_Phylogenetic_Networks_from_Multiple_Gene_Trees/links/54b7e7b50cf269d8cbf58cc4.pdf.
Toggle abstract
"Phylogenetic networks provide a graphical representation of evolutionary histories that involve nontreelike evolutionary events, such as horizontal gene transfer (HGT). One approach for inferring phylogenetic networks is based on reconciling gene trees, assuming all incongruence among the gene trees is due to HGT. Several mathematical results and algorithms, both exact and heuristic, have been introduced to construct and analyze phylogenetic networks. Here, we address the computational problem of inferring phylogenetic networks with minimum reticulations from a collection of gene trees. As this problem is known to be NPhard even for a pair of gene trees, the problem at hand is very hard. In this paper, we present an efficient heuristic, MURPAR, for inferring a phylogenetic network from a collection of gene trees by using pairwise reconciliations of trees in the collection. Given the development of efficient and accurate methods for pairwise gene tree reconciliations, MURPAR inherits this efficiency and accuracy. Further, the method includes a formulation for combining pairwise reconciliations that is naturally amenable to an efficient integer linear programming (ILP) solution. We show that MURPAR produces more accurate results than other methods and is at least as fast, when run on synthetic and biological data. We believe that our method is especially important for rapidly obtaining estimates of genomescale evolutionary histories that can be further refined by more detailed and computeintensive methods. © 2012 SpringerVerlag."



Pawel Górecki and
Jerzy Tiuryn. Inferring evolutionary scenarios in the duplication, loss and horizontal gene transfer model. In Logic and Program Semantics, Vol. 7230:83105 of LNCS, springer, 2012. Keywords: duplication, explicit network, lateral gene transfer, loss, phylogenetic network, phylogeny, reconstruction. Note: http://dx.doi.org/10.1007/9783642294853_7.
Toggle abstract
"An Htree is a formal model of evolutionary scenario. It can be used to represent any processes with gene duplication and loss, horizontal gene transfer (HGT) and speciation events. The model of Htrees, introduced in [26], is an extension of the duplicationloss model (DLmodel). Similarly to its ancestor, it has a number of interesting mathematical and biological properties. It is, however, more computationally complex than the DLmodel. In this paper, we primarily address the problem of inferring Htrees that are compatible with a given gene tree and a given phylogeny of species with HGTs. These results create a mathematical and computational foundation for a more general and practical problem of inferring HGTs from given gene and species trees with HGTs. We also demonstrate how our model can be used to support HGT hypotheses based on empirical data sets. © 2012 SpringerVerlag Berlin Heidelberg."



Mukul S. Bansal,
Eric J. Alm and
Manolis Kellis. Efficient Algorithms for the Reconciliation Problem with Gene Duplication, Horizontal Transfer, and Loss. In ISMB12, Vol. 28(12):i283i291 of BIO, 2012. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, loss, phylogenetic network, phylogeny, Program Angst, Program Mowgli, Program RANGERDTL, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/bts225.
Toggle abstract
"Motivation: Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, where the input consists of a gene family phylogeny and the corresponding species phylogeny, and the goal is to reconcile the two by postulating speciation, gene duplication, horizontal gene transfer and gene loss events. This reconciliation problem is referred to as duplicationtransferloss (DTL) reconciliation and has been extensively studied in the literature. Yet, even the fastest existing algorithms for DTL reconciliation are too slow for reconciling large gene families and for use in more sophisticated applications such as gene tree or species tree reconstruction.Results: We present two new algorithms for the DTL reconciliation problem that are dramatically faster than existing algorithms, both asymptotically and in practice. We also extend the standard DTL reconciliation model by considering distancedependent transfer costs, which allow for more accurate reconciliation and give an efficient algorithm for DTL reconciliation under this extended model. We implemented our new algorithms and demonstrated up to 100 000fold speedup over existing methods, using both simulated and biological datasets. This dramatic improvement makes it possible to use DTL reconciliation for performing rigorous evolutionary analyses of large gene families and enables its use in advanced reconciliationbased gene and species tree reconstruction methods. © The Author(s) 2012. Published by Oxford University Press."



AnChiang Chu,
Jesper Jansson,
Richard Lemence,
Alban Mancheron and
KunMao Chao. Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics. In TAMC12, Vol. 7287:177188 of LNCS, springer, 2012. Keywords: from triplets, galled network, level k phylogenetic network, phylogenetic network. Note: preliminary version.
Toggle abstract
"We study the asymptotic behavior of a new type of maximization recurrence, defined as follows. Let k be a positive integer and p k(x) a polynomial of degree k satisfying p k(0) = 0. Define A 0 = 0 and for n ≥ 1, let A n = max 0≤i<n{A i+n kp k(i/n)}. We prove that lim n→∞A n/n n = sup{pk(x)/1x k : 0≤x<1}. We also consider two closely related maximization recurrences S n and S′ n, defined as S 0 = S′ 0 = 0, and for n ≥ 1, S n = max 0≤i<n{S i + i(ni)(ni1)/2} and S′ n = max 0≤i<n{S′ i + ( 3 ni) + 2i( 2 ni) + (ni)( 2 i)}. We prove that lim n→∞ S′n/3( 3 n) = 2(√31)/3 ≈ 0.488033..., resolving an open problem from Bioinformatics about rooted triplets consistency in phylogenetic networks. © 2012 SpringerVerlag."





Jesper Jansson and
Andrzej Lingas. Computing the rooted triplet distance between galled trees by counting triangles. In CPM12, Vol. 7354:385398 of LNCS, springer, 2012. Keywords: distance between networks, explicit network, from network, galled tree, phylogenetic network, phylogeny, polynomial, triplet distance. Note: http://www.df.lth.se/~jj/Publications/d_rt_for_Galled_Trees5_CPM_2012.pdf.
Toggle abstract
"We consider a generalization of the rooted triplet distance between two phylogenetic trees to two phylogenetic networks. We show that if each of the two given phylogenetic networks is a socalled galled tree with n leaves then the rooted triplet distance can be computed in o(n 2.688) time. Our upper bound is obtained by reducing the problem of computing the rooted triplet distance to that of counting monochromatic and almost monochromatic triangles in an undirected, edgecolored graph. To count different types of colored triangles in a graph efficiently, we extend an existing technique based on matrix multiplication and obtain several new related results that may be of independent interest. © 2012 SpringerVerlag."



Leo van Iersel,
Steven Kelk,
Nela Lekic and
Celine Scornavacca. A practical approximation algorithm for solving massive instances of hybridization number. In WABI12, Vol. 7534(430440) of LNCS, springer, 2012. Keywords: agreement forest, approximation, explicit network, from rooted trees, hybridization, phylogenetic network, phylogeny, Program CycleKiller, Program Dendroscope, Program HybridNET, reconstruction, software. Note: http://arxiv.org/abs/1205.3417.
Toggle abstract
"Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. In practice, exact solvers struggle to solve instances with reticulation number larger than 40. For such instances, one has to resort to heuristics and approximation algorithms. Here we present the algorithm CycleKiller which is the first approximation algorithm that can produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Theoretically, the algorithm is an exponentialtime 2approximation (or 4approximation in its fastest mode). However, using simulations we demonstrate that in practice the algorithm runs quickly for large and difficult instances, producing solutions within one percent of optimality. An implementation of this algorithm, which extends the theoretical work of [14], has been made publicly available. © 2012 SpringerVerlag."



Hyun Jung Park and
Luay Nakhleh. Inference of reticulate evolutionary histories by maximum likelihood:
The performance of information criteria. In RECOMBCG'12, Vol. 13(suppl 19):S12 of BMCB, 2012. Keywords: AIC, BIC, explicit network, heuristic, likelihood, phylogenetic network, phylogeny, reconstruction, statistical model. Note: http://www.biomedcentral.com/14712105/13/S19/S12.



Maureen Stolzer,
Han Lai,
Minli Xu,
Deepa Sathaye,
Benjamin Vernot and
Dannie Durand. Inferring Duplications, Losses, Transfers, and Incomplete Lineage Sorting with NonBinary Species Trees. In ECCB12, Vol. 28(18):i409i415 of BIO, 2012. Keywords: duplication, explicit network, from rooted trees, lateral gene transfer, loss, phylogenetic network, phylogeny, Program Notung, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/bts386.
Toggle abstract
"Motivation: Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions.The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. Results: We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile nonbinary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixedparameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. © The Author(s) 2012. Published by Oxford University Press."



ThiHau Nguyen,
JeanPhilippe Doyon,
Stéphanie Pointet,
AnneMuriel Chifolleau Arigon,
Vincent Ranwez and
Vincent Berry. Accounting for Gene Tree Uncertainties Improves Gene Trees and Reconciliation Inference. In WABI12, Vol. 7534:123134 of LNCS, springer, 2012. Keywords: duplication, heuristic, lateral gene transfer, phylogenetic network, phylogeny, Program Mowgli, reconstruction. Note: http://hal.archivesouvertes.fr/hal00718347/en/.
Toggle abstract
"We propose a reconciliation heuristic accounting for gene duplications, losses and horizontal transfers that specifically takes into account the uncertainties in the gene tree. Rearrangements are tried for gene tree edges that are weakly supported, and are accepted whenever they improve the reconciliation cost. We prove useful properties on the dynamic programming matrix used to compute reconciliations, which allows to speedup the tree space exploration when rearrangements are generated by Nearest Neighbor Interchanges (NNI) edit operations. Experimental results on simulated and real data confirm that running times are greatly reduced when considering the abovementioned optimization in comparison to the naïve rearrangement procedure. Results also show that gene trees modified by such NNI rearrangements are closer to the correct (simulated) trees and lead to more correct event predictions on average. The program is available at http://www.atgcmontpellier.fr/ Mowgli/. © 2012 SpringerVerlag."



Katharina Huber,
Vincent Moulton,
Andreas Spillner,
Sabine Storandt and
Radoslaw Suchecki. Computing a consensus of multilabeled trees. In ALENEX12, Pages 8492, 2012. Keywords: duplication, explicit network, exponential algorithm, phylogenetic network, phylogeny. Note: http://siam.omnibooksonline.com/2012ALENEX/data/papers/020.pdf.
Toggle abstract
In this paper we consider two challenging problems that arise in the context of computing a consensus of a collection of multilabeled trees, namely (1) selecting a compatible collection of clusters on a multiset from an ordered list of such clusters and (2) optimally refining high degree vertices in a multilabeled tree. Forming such a consensus is part of an approach to reconstruct the evolutionary history of a set of species for which events such as genome duplication and hybridization have occurred in the past. We present exact algorithms for solving (1) and (2) that have an exponential runtime in the worst case. To give some impression of their performance in practice, we apply them to simulated input and to a real biological data set highlighting the impact of several structural properties of the input on the performance.



Cayla McBee. Generalizing Fourier Calculus on Evolutionary Trees to Splits Networks. In ISPAN'12, Pages 149155, 2012. Keywords: abstract network, from sequences, phylogenetic network, phylogeny, split network, statistical model.
Toggle abstract
"Biologists have been interested in Phylogenetics, the study of evolutionary relatedness among various groups of organisms, for more than 140 years. In spite of this, it has only been in the last 40 years that advances in technology and the availability of DNA sequences have led to statistical, computational and algorithmic work on determining evolutionary relatedness between organisms. One method of determining historical relationships between organisms is to assume a group based evolutionary model and use a discrete Fourier transform. The 1993 paper 'Fourier Calculus on Evolutionary Trees' by L.A. Szekely, M.A. Steel and P.L. Erdos outlines this process. The transform presented in Szekely et al provides an invertible relationship between phylogenetic trees and expected frequencies of nucleotide patterns in nucleotide sequences. This implies that given a set of nucleotide sequences from various organisms it is possible to construct a phylogenetic tree that represents the historical relationships of those organisms. Some scenarios are poorly described by phylogenetic trees and there are biological and statistical reasons for using networks to model phylogenetic relationships. Given this motivation I have generalized Szekely et al's result to apply to a specific type of phylogenetic network known as a splits network. © 2012 IEEE."



Fenglou Mao,
David Williams,
Olga Zhaxybayeva,
Maria S. Poptsova,
Pascal Lapierre,
J. Peter Gogarten and
Ying Xu. Quartet decomposition server: a platform for analyzing phylogenetic trees. In BMCB, Vol. 13:123, 2012. Keywords: abstract network, from quartets, phylogenetic network, phylogeny, Program Quartet Decomposition, reconstruction, software, split network.
Toggle abstract
"Background: The frequent exchange of genetic material among prokaryotes means that extracting a majority or plurality phylogenetic signal from many gene families, and the identification of gene families that are in significant conflict with the plurality signal is a frequent task in comparative genomics, and especially in phylogenomic analyses. Decomposition of gene trees into embedded quartets (unrooted trees each with four taxa) is a convenient and statistically powerful technique to address this challenging problem. This approach was shown to be useful in several studies of completely sequenced microbial genomes.Results: We present here a web server that takes a collection of gene phylogenies, decomposes them into quartets, generates a Quartet Spectrum, and draws a split network. Users are also provided with various data download options for further analyses. Each gene phylogeny is to be represented by an assessment of phylogenetic information content, such as sets of trees reconstructed from bootstrap replicates or sampled from a posterior distribution. The Quartet Decomposition server is accessible at http://quartets.uga.edu.Conclusions: The Quartet Decomposition server presented here provides a convenient means to perform Quartet Decomposition analyses and will empower users to find statistically supported phylogenetic conflicts. © 2012 Mao et al.; licensee BioMed Central Ltd."



Celine Scornavacca,
Franziska Zickmann and
Daniel H. Huson. Tanglegrams for Rooted Phylogenetic Trees and Networks. In ISMB11, Vol. 27(13):i248i256 of BIO, 2011. Keywords: from network, heuristic, phylogenetic network, phylogeny, Program Dendroscope, tanglegram, visualization. Note: http://dx.doi.org/10.1093/bioinformatics/btr210.
Toggle abstract
"Motivation: In systematic biology, one is often faced with the task of comparing different phylogenetic trees, in particular in multigene analysis or cospeciation studies. One approach is to use a tanglegram in which two rooted phylogenetic trees are drawn opposite each other, using auxiliary lines to connect matching taxa. There is an increasing interest in using rooted phylogenetic networks to represent evolutionary history, so as to explicitly represent reticulate events, such as horizontal gene transfer, hybridization or reassortment. Thus, the question arises how to define and compute a tanglegram for such networks. Results: In this article, we present the first formal definition of a tanglegram for rooted phylogenetic networks and present a heuristic approach for computing one, called the NNtanglegram method. We compare the performance of our method with existing tree tanglegram algorithms and also show a typical application to real biological datasets. For maximum usability, the algorithm does not require that the trees or networks are bifurcating or bicombining, or that they are on identical taxon sets. © The Author(s) 2011. Published by Oxford University Press."



Changiz Eslahchi and
Reza Hassanzadeh. New Algorithm for Constructing Supernetworks from Partial Trees. In MCCMB11, Pages 106107, 2011. Keywords: abstract network, from unrooted trees, heuristic, phylogenetic network, phylogeny, Program SNSA, reconstruction, simulated annealing, split network. Note: http://mccmb.belozersky.msu.ru/2011/mccmb11.pdf#page=106.



Louxin Zhang,
Yen Kaow Ng,
Taoyang Wu and
Yu Zheng. Network model and efficient method for detecting relative duplications or horizontal gene transfers. In ICCABS11, Pages 214219, 2011. Keywords: dynamic programming, explicit network, from network, from rooted trees, from species tree, phylogenetic network, phylogeny, polynomial, reconstruction.
Toggle abstract
"Background: Horizontal gene transfer and gene duplication are two significant forces behind genome evolution. As more and more wellsupported examples of HGTs are being revealed, there is a growing awareness that HGT is more widespread than previously thought, occurring often not only within bacteria, but also between species remotely related such as bacteria and plants or plants and animals. Although a substantial number of genomic sequences are known, HGT inference remains challenging. Parsimonybased inferences of HGT events are typically NPhard under the framework of gene tree and species tree comparison; it is even more timeconsuming if the maximum likelihood approach is used. The fact that gene tree and species tree incongruence can be further confounded by gene duplication and gene loss events motivates us to incorporate considerations for these events into our inference of HGT events. Similarly, it will be beneficial if known HGT events are considered in the inference of gene duplications and gene losses. © 2011 IEEE."



Tetsuo Asano,
Jesper Jansson,
Kunihiko Sadakane,
Ryuhei Uehara and
Gabriel Valiente. Faster Computation of the RobinsonFoulds Distance between Phylogenetic Networks. In CPM10, Vol. 6129:190201 of LNCS, springer, 2010. Keywords: distance between networks, explicit network, level k phylogenetic network, phylogenetic network, polynomial, spread. Note: http://hdl.handle.net/10119/9859, slides available at http://cs.nyu.edu/parida/CPM2010/MainPage_files/18.pdf.
Toggle abstract
"The RobinsonFoulds distance, which is the most widely used metric for comparing phylogenetic trees, has recently been generalized to phylogenetic networks. Given two networks N1,N2 with n leaves, m nodes, and e edges, the RobinsonFoulds distance measures the number of clusters of descendant leaves that are not shared by N1 and N2. The fastest known algorithm for computing the RobinsonFoulds distance between those networks runs in O(m(m + e)) time. In this paper, we improve the time complexity to O(n(m+ e)/ log n) for general networks and O(nm/log n) for general networks with bounded degree, and to optimal O(m + e) time for planar phylogenetic networks and boundedlevel phylogenetic networks.We also introduce the natural concept of the minimum spread of a phylogenetic network and show how the running time of our new algorithm depends on this parameter. As an example, we prove that the minimum spread of a levelk phylogenetic network is at most k + 1, which implies that for two levelk phylogenetic networks, our algorithm runs in O((k + 1)(m + e)) time. © SpringerVerlag Berlin Heidelberg 2010."



Yufeng Wu. Close Lower and Upper Bounds for the Minimum Reticulate Network of Multiple Phylogenetic Trees. In ISMB10, Vol. 26(12):i140i148 of BIO, 2010. Keywords: explicit network, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, Program PIRN, software. Note: http://dx.doi.org/10.1093/bioinformatics/btq198.
Toggle abstract
"Motivation: Reticulate network is a model for displaying and quantifying the effects of complex reticulate processes on the evolutionary history of species undergoing reticulate evolution. A central computational problem on reticulate networks is: given a set of phylogenetic trees (each for some region of the genomes), reconstruct the most parsimonious reticulate network (called the minimum reticulate network) that combines the topological information contained in the given trees. This problem is wellknown to be NPhard. Thus, existing approaches for this problem either work with only two input trees or make simplifying topological assumptions. Results: We present novel results on the minimum reticulate network problem. Unlike existing approaches, we address the fully general problem: there is no restriction on the number of trees that are input, and there is no restriction on the form of the allowed reticulate network. We present lower and upper bounds on the minimum number of reticulation events in the minimum reticulate network (and infer an approximately parsimonious reticulate network). A program called PIRN implements these methods, which also outputs a graphical representation of the inferred network. Empirical results on simulated and biological data show that our methods are practical for a wide range of data. More importantly, the lower and upper bounds match for many datasets (especially when the number of trees is small or reticulation level is low), and this allows us to solve the minimum reticulate network problem exactly for these datasets. Availability: A software tool, PIRN, is available for download from the web page: http://www.engr.uconn.edu/ywu. Contact: ywu@engr.uconn.edu. Supplementary information: Supplementary data is available at Bioinformatics online. © The Author(s) 2010. Published by Oxford University Press."



Yufeng Wu and
Jiayin Wang. Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees. In ISBRA10, Vol. 6053:203214 of LNCS, springer, 2010. Keywords: agreement forest, explicit network, from rooted trees, hybridization, integer linear programming, minimum number, phylogenetic network, phylogeny, Program HybridNumber, Program SPRDist, SPR distance. Note: http://www.engr.uconn.edu/~ywu/Papers/ISBRA10WuWang.pdf.
Toggle abstract
"Hybridization is a reticulate evolutionary process. An established problem on hybridization is computing the minimum number of hybridization events, called the hybridization number, needed in the evolutionary history of two phylogenetic trees. This problem is known to be NPhard. In this paper, we present a new practical method to compute the exact hybridization number. Our approach is based on an integer linear programming formulation. Simulation results on biological and simulated datasets show that our method (as implemented in program SPRDist) is more efficient and robust than an existing method. © 2010 SpringerVerlag Berlin Heidelberg."





Chris Whidden,
Robert G. Beiko and
Norbert Zeh. Fast FPT Algorithms for Computing Rooted Agreement Forests: Theory and Experiments. In Proceedings of the ninth International Symposium on Experimental Algorithms (SEA'10), Vol. 6049:141153 of LNCS, springer, 2010. Keywords: agreement forest, explicit network, FPT, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, Program HybridInterleave, reconstruction, SPR distance. Note: https://www.cs.dal.ca/sites/default/files/technical_reports/CS201003.pdf.
Toggle abstract
"We improve on earlier FPT algorithms for computing a rooted maximum agreement forest (MAF) or a maximum acyclic agreement forest (MAAF) of a pair of phylogenetic trees. Their sizes give the subtreepruneandregraft (SPR) distance and the hybridization number of the trees, respectively. We introduce new branching rules that reduce the running time of the algorithms from O(3 kn) and O(3 kn log n) to O(2.42 kn) and O(2.42 kn log n), respectively. In practice, the speed up may be much more than predicted by the worstcase analysis.We confirm this intuition experimentally by computing MAFs for simulated trees and trees inferred from protein sequence data. We show that our algorithm is orders of magnitude faster and can handle much larger trees and SPR distances than the best previous methods, treeSAT and sprdist. © SpringerVerlag Berlin Heidelberg 2010."



Luay Nakhleh,
Derek Ruths and
Hideki Innan. Gene Trees, Species Trees, and Species Networks. In
R. Guerra,
D. B. Allison and
D. Goldstein editors, Metaanalysis and Combining Information in Genetics and Genomics, 2009. Keywords: coalescent, explicit network, from rooted trees, from species tree, phylogenetic network, phylogeny, reconstruction. Note: http://www.cs.rice.edu/~nakhleh/Papers/GuerraGoldsteinBookChapter.pdf.



ThuHien To and
Michel Habib. Levelk Phylogenetic Networks Are Constructable from a Dense Triplet Set in Polynomial Time. In CPM09, (5577):275288, springer, 2009. Keywords: explicit network, from triplets, level k phylogenetic network, minimum number, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://arxiv.org/abs/0901.1657.
Toggle abstract
"For a given dense triplet set Τ there exist two natural questions [7]: Does there exist any phylogenetic network consistent with Τ? In case such networks exist, can we find an effective algorithm to construct one? For cases of networks of levels k = 0, 1 or 2, these questions were answered in [1,6,7,8,10] with effective polynomial algorithms. For higher levels k, partial answers were recently obtained in [11] with an O(/Τ/k+1)time algorithm for simple networks. In this paper, we give a complete answer to the general case, solving a problem proposed in [7]. The main idea of our proof is to use a special property of SNsets in a levelk network. As a consequence, for any fixed k, we can also find a levelk network with the minimum number of reticulations, if one exists, in polynomial time. © 2009 Springer Berlin Heidelberg."



Philippe Gambette,
Vincent Berry and
Christophe Paul. The structure of levelk phylogenetic networks. In CPM09, Vol. 5577:289300 of LNCS, springer, 2009. Keywords: coalescent, explicit network, galled tree, level k phylogenetic network, phylogenetic network, Program Recodon. Note: http://hallirmm.ccsd.cnrs.fr/lirmm00371485/en/.
Toggle abstract
"Evolution is usually described as a phylogenetic tree, but due to some exchange of genetic material, it can be represented as a phylogenetic network which has an underlying tree structure. The notion of level was recently introduced as a parameter on realistic kinds of phylogenetic networks to express their complexity and treelikeness. We study the structure of levelk networks, and how they can be decomposed into levelk generators. We also provide a polynomial time algorithm which takes as input the set of levelk generators and builds the set of level(k + 1) generators. Finally, with a simulation study, we evaluate the proportion of levelk phylogenetic networks among networks generated according to the coalescent model with recombination. © 2009 Springer Berlin Heidelberg."



Daniel H. Huson,
Regula Rupp,
Vincent Berry,
Philippe Gambette and
Christophe Paul. Computing Galled Networks from Real Data. In ISMBECCB09, Vol. 25(12):i85i93 of BIO, 2009. Keywords: abstract network, cluster containment, explicit network, FPT, from clusters, from rooted trees, galled network, NP complete, phylogenetic network, phylogeny, polynomial, Program Dendroscope, reconstruction. Note: http://hallirmm.ccsd.cnrs.fr/lirmm00368545/en/.
Toggle abstract
"Motivation: Developing methods for computing phylogenetic networks from biological data is an important problem posed by molecular evolution and much work is currently being undertaken in this area. Although promising approaches exist, there are no tools available that biologists could easily and routinely use to compute rooted phylogenetic networks on real datasets containing tens or hundreds of taxa. Biologists are interested in clades, i.e. groups of monophyletic taxa, and these are usually represented by clusters in a rooted phylogenetic tree. The problem of computing an optimal rooted phylogenetic network from a set of clusters, is hard, in general. Indeed, even the problem of just determining whether a given network contains a given cluster is hard. Hence, some researchers have focused on topologically restricted classes of networks, such as galled trees and levelk networks, that are more tractable, but have the practical drawback that a given set of clusters will usually not possess such a representation. Results: In this article, we argue that galled networks (a generalization of galled trees) provide a good tradeoff between level of generality and tractability. Any set of clusters can be represented by some galled network and the question whether a cluster is contained in such a network is easy to solve. Although the computation of an optimal galled network involves successively solving instances of two different NPcomplete problems, in practice our algorithm solves this problem exactly on large datasets containing hundreds of taxa and many reticulations in seconds, as illustrated by a dataset containing 279 prokaryotes. © 2009 The Author(s)."





Chris Whidden and
Norbert Zeh. A Unifying View on Approximation and FPT of Agreement Forests. In WABI09, Vol. 5724:390402 of LNCS, Springer, 2009. Keywords: agreement forest, approximation, explicit network, FPT, minimum number, phylogenetic network, phylogeny, reconstruction. Note: https://www.cs.dal.ca/sites/default/files/technical_reports/CS200902.pdf.
Toggle abstract
"We provide a unifying view on the structure of maximum (acyclic) agreement forests of rooted and unrooted phylogenies. This enables us to obtain linear or O(n log n)time 3approximation and improved fixedparameter algorithms for the subtree prune and regraft distance between two rooted phylogenies, the tree bisection and reconnection distance between two unrooted phylogenies, and the hybridization number of two rooted phylogenies. © 2009 Springer Berlin Heidelberg."



Leo van Iersel,
Judith Keijsper,
Steven Kelk,
Leen Stougie,
Ferry Hagen and
Teun Boekhout. Constructing level2 phylogenetic networks from triplets. In RECOMB08, Vol. 4955:450462 of LNCS, springer, 2008. Keywords: explicit network, from triplets, level k phylogenetic network, NP complete, phylogenetic network, phylogeny, polynomial, Program Level2, reconstruction. Note: http://homepages.cwi.nl/~iersel/level2full.pdf. An appendix with proofs can be found here http://arxiv.org/abs/0707.2890.
Toggle abstract
"Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level1 network consistent with T, and if so, to construct such a network [24]. Here, we extend this work by showing that this problem is even polynomial time solvable for the construction of level2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily nontreelike. This further strengthens the case for the use of tripletbased methods in the construction of phylogenetic networks. We also implemented the algorithm and applied it to yeast data. © 2009 IEEE."



Rune Lyngsø,
Yun S. Song and
Jotun Hein. Accurate Computation of Likelihoods in the Coalescent with Recombination via Parsimony. In RECOMB08, Vol. 4955:463477 of LNCS, springer, 2008. Keywords: coalescent, likelihood, phylogenetic network, phylogeny, recombination, statistical model. Note: http://dx.doi.org/10.1007/9783540788393_41.
Toggle abstract
"Understanding the variation of recombination rates across a given genome is crucial for disease gene mapping and for detecting signatures of selection, to name just a couple of applications. A widelyused method of estimating recombination rates is the maximum likelihood approach, and the problem of accurately computing likelihoods in the coalescent with recombination has received much attention in the past. A variety of sampling and approximation methods have been proposed, but no single method seems to perform consistently better than the rest, and there still is great value in developing better statistical methods for accurately computing likelihoods. So far, with the exception of some twolocus models, it has remained unknown how the true likelihood exactly behaves as a function of model parameters, or how close estimated likelihoods are to the true likelihood. In this paper, we develop a deterministic, parsimonybased method of accurately computing the likelihood for multilocus input data of moderate size. We first find the set of all ancestral configurations (ACs) that occur in evolutionary histories with at most k crossover recombinations. Then, we compute the likelihood by summing over all evolutionary histories that can be constructed only using the ACs in that set. We allow for an arbitrary number of crossing over, coalescent and mutation events in a history, as long as the transitions stay within that restricted set of ACs. For given parameter values, by gradually increasing the bound k until the likelihood stabilizes, we can obtain an accurate estimate of the likelihood. At least for moderate crossover rates, the algorithmbased method described here opens up a new window of opportunities for testing and finetuning statistical methods for computing likelihoods. © 2008 SpringerVerlag Berlin Heidelberg."



Leo van Iersel and
Steven Kelk. Constructing the Simplest Possible Phylogenetic Network from Triplets. In ISAAC08, Vol. 5369:472483 of LNCS, springer, 2008. Keywords: explicit network, from triplets, galled tree, level k phylogenetic network, minimum number, phylogenetic network, phylogeny, polynomial, Program Marlon, Program Simplistic. Note: http://arxiv.org/abs/0805.1859.



Cuong Than and
Luay Nakhleh. SPRbased Tree Reconciliation: Nonbinary Trees and Multiple Solutions. In APBC08, Pages 251260, 2008. Keywords: evaluation, from rooted trees, lateral gene transfer, phylogenetic network, phylogeny, Program LatTrans, Program PhyloNet, reconstruction, SPR distance. Note: http://www.cs.rice.edu/~nakhleh/Papers/apbc08.pdf.



Daniel H. Huson and
Regula Rupp. Summarizing Multiple Gene Trees Using Cluster Networks. In WABI08, Vol. 5251:296305 of LNCS, springer, 2008. Keywords: abstract network, from clusters, from rooted trees, phylogenetic network, phylogeny, polynomial, Program Dendroscope. Note: http://dx.doi.org/10.1007/9783540873617_25, slides from the MIEP Conference available at http://www.lirmm.fr/MIEP08/slides/11_13_rupp.pdf.
Toggle abstract
"The result of a multiple gene tree analysis is usually a number of different tree topologies that are each supported by a significant proportion of the genes. We introduce the concept of a cluster network that can be used to combine such trees into a single rooted network, which can be drawn either as a cladogram or phylogram. In contrast to split networks, which can grow exponentially in the size of the input, cluster networks grow only quadratically. A cluster network is easily computed using a modification of the treepopping algorithm, which we call networkpopping. The approach has been implemented as part of the Dendroscope treedrawing program and its application is illustrated using data and results from three recent studies on large numbers of gene trees. © 2008 SpringerVerlag Berlin Heidelberg."



Sagi Snir and
Tamir Tuller. Novel Phylogenetic Network Inference by Combining Maximum Likelihood and Hidden Markov Models. In WABI08, Vol. 5251:354368 of LNCS, springer, 2008. Keywords: explicit network, from sequences, HMM, lateral gene transfer, likelihood, phylogenetic network, phylogeny, statistical model. Note: http://dx.doi.org/10.1007/9783540873617_30.
Toggle abstract
"Horizontal Gene Transfer (HGT) is the event of transferring genetic material from one lineage in the evolutionary tree to a different lineage. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Although the prevailing assumption is of complete HGT, cases of partial HGT (which are also named chimeric HGT) where only part of a gene is horizontally transferred, have also been reported, albeit less frequently. In this work we suggest a new probabilistic model for analyzing and modeling phylogenetic networks, the NETHMM. This new model captures the biologically realistic assumption that neighboring sites of DNA or amino acid sequences are not independent, which increases the accuracy of the inference. The model describes the phylogenetic network as a Hidden Markov Model (HMM), where each hidden state is related to one of the network's trees. One of the advantages of the NETHMM is its ability to infer partial HGT as well as complete HGT. We describe the properties of the NETHMM, devise efficient algorithms for solving a set of problems related to it, and implement them in software. We also provide a novel complementary significance test for evaluating the fitness of a model (NETHMM) to a given data set. Using NETHMM we are able to answer interesting biological questions, such as inferring the length of partial HGT's and the affected nucleotides in the genomic sequences, as well as inferring the exact location of HGT events along the tree branches. These advantages are demonstrated through the analysis of synthetical inputs and two different biological inputs. © 2008 SpringerVerlag Berlin Heidelberg."



Stefan Grünewald,
Andreas Spillner,
Kristoffer Forslund and
Vincent Moulton. Constructing Phylogenetic Supernetworks from Quartets. In WABI08, Vol. 5251:284295 of LNCS, springer, 2008. Keywords: abstract network, from quartets, from unrooted trees, phylogenetic network, phylogeny, Program QNet, Program SplitsTree, reconstruction, split network. Note: http://dx.doi.org/10.1007/9783540873617_24.
Toggle abstract
"In phylogenetics it is common practice to summarize collections of partial phylogenetic trees in the form of supertrees. Recently it has been proposed to construct phylogenetic supernetworks as an alternative to supertrees as these allow the representation of conflicting information in the trees, information that may not be representable in a single tree. Here we introduce SuperQ, a new method for constructing such supernetworks. It works by breaking the input trees into quartet trees, and stitching together the resulting set to form a network. The stitching process is performed using an adaptation of the QNet method for phylogenetic network reconstruction. In addition to presenting the new method, we illustrate the applicability of SuperQ to three data sets and discuss future directions for testing and development. © 2008 SpringerVerlag Berlin Heidelberg."



Gabriel Cardona,
Mercè Llabrés,
Francesc Rosselló and
Gabriel Valiente. Phylogenetic Networks: Justification, Models, Distances and Algorithms. In VI Jornadas de Matemática Discreta y Algorítmica (JMDA'08), 2008. Keywords: distance between networks, mu distance, phylogenetic network, phylogeny, polynomial, survey, time consistent network, tree child network, tripartition distance, triplet distance. Note: http://bioinfo.uib.es/media/uploaded/jmda2008_submission_611.pdf.



Daniel H. Huson and
Tobias Kloepper. Beyond Galled Trees  Decomposition and Computation of Galled Networks. In RECOMB07, Vol. 4453:211225 of LNCS, springer, 2007. Keywords: FPT, from splits, from trees, galled network, phylogenetic network, phylogeny, Program SplitsTree, reconstruction. Note: http://dx.doi.org/10.1007/9783540716815_15, errata..





Guohua Jin,
Luay Nakhleh,
Sagi Snir and
Tamir Tuller. A New Lineartime Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance. In ISBRA07, Vol. 4463:6172 of LNCS, springer, 2007. Keywords: approximation, heuristic, parsimony, phylogenetic network, phylogeny, Program Nepal. Note: http://www.cs.rice.edu/~nakhleh/Papers/isbra07.pdf.











Hadas Birin,
Zohar GalOr,
Isaac Elias and
Tamir Tuller. Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion. In WABI07, Vol. 4645:111123 of LNCS, springer, 2007. Keywords: explicit network, from sequences, phylogenetic network, phylogeny, reconstruction. Note: http://safrabio.cs.tau.ac.il/download/Papers/Birin_et_al.pdf.









Elena Dubrova. Phylogenetic networks with edgedisjoint recombination cycles. In Proceedings of SPIE Bioengineered and Bioinspired Systems II (SPIEBBS II), Vol. 5839:381388, 2005. Keywords: galled tree, phylogenetic network, polynomial, site consistency. Note: http://dx.doi.org/10.1117/12.607910.
Toggle abstract
"Phylogenetic analysis is a branch of biology that establishes the evolutionary relationships between living organisms. The goal of phylogenetic analysis is to determine the order and approximate timing of speciation events in the evolution of a given set of species. Phylogenetic networks allow to represent evolutionary histories that include events like recombination and hybridization. In this paper, we introduce a class of phylogenetic networks called extended galledtrees in which recombination cycles share no edge. We show that the site consistency problem, which is NPhard in general, can be solved in polynomial time for this class of phylogenetic networks."





Trinh N. D. Huynh,
Jesper Jansson,
Nguyen Bao Nguyen and
WingKin Sung. Constructing a Smallest Refining Galled Phylogenetic Network. In RECOMB05, Vol. 3500:265280 of LNCS, springer, 2005. Keywords: from rooted trees, galled tree, NP complete, phylogenetic network, phylogeny, polynomial, Program SPNet, reconstruction. Note: http://www.df.lth.se/~jj/Publications/refining_gn3_RECOMB2005.pdf.



Daniel H. Huson,
Tobias Kloepper,
Peter J. Lockhart and
Mike Steel. Reconstruction of Reticulate Networks from Gene Trees. In RECOMB05, Vol. 3500:233249 of LNCS, springer, 2005. Keywords: from rooted trees, from splits, phylogenetic network, phylogeny, reconstruction, split, split network, visualization. Note: http://dx.doi.org/10.1007/11415770_18.



Daniel H. Huson and
Tobias Kloepper. Computing recombination networks from binary sequences. In ECCB05, Vol. 21(suppl. 2):ii159ii165 of BIO, 2005. Keywords: from sequences, phylogenetic network, phylogeny, recombination. Note: http://dx.doi.org/10.1093/bioinformatics/bti1126.
Toggle abstract
"Motivation:Phylogenetic networks are becoming an important tool in molecular evolution, as the evolutionary role of reticulate events, such as hybridization, horizontal gene transfer and recombination, is becoming more evident, and as the available data is dramatically increasing in quantity and quality. Results: This paper addresses the problem of computing a most parsimonious recombination network for an alignment of binary sequences that are assumed to have arisen under the 'infinite sites' model of evolution with recombinations. Using the concept of a splits network as the underlying datastructure, this paper shows how a recent method designed for the computation of hybridization networks can be extended to also compute recombination networks. A robust implementation of the approach is provided and is illustrated using a number of real biological datasets. © The Author 2005. Published by Oxford University Press. All rights reserved."





Jesper Jansson,
Nguyen Bao Nguyen and
WingKin Sung. Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. In SODA05, Pages 349358, 2005. 1 comment Keywords: approximation, explicit network, from triplets, galled tree, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://portal.acm.org/citation.cfm?id=1070481.



Rune Lyngsø,
Yun S. Song and
Jotun Hein. Minimum Recombination Histories by Branch and Bound. In WABI05, Vol. 3692:239250 of LNCS, springer, 2005. Keywords: ARG, branch and bound, from sequences, minimum number, Program Beagle, recombination, reconstruction, software. Note: http://www.cs.ucdavis.edu/~yssong/Pub/WABI05239.pdf.



Luay Nakhleh and
LiSan Wang. Phylogenetic Networks, Trees, and Clusters. In IWBRA05, Vol. 3515:919926 of LNCS, springer, 2005. Keywords: cluster containment, evaluation, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, tree child network, tree containment. Note: http://www.cs.rice.edu/~nakhleh/Papers/NakhlehWang.pdf.



Luay Nakhleh and
LiSan Wang. Phylogenetic Networks: Properties and Relationship to Trees and Clusters. In TCSB2, Vol. 3680:8299 of LNCS, springer, 2005. Keywords: cluster containment, evaluation, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, tree child network, tree containment. Note: http://www.cs.rice.edu/~nakhleh/Papers/LNCS_TCSB05.pdf.









Yun S. Song,
Yufeng Wu and
Dan Gusfield. Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. In ISMB05, Vol. 21:i413i422 of BIO, 2005. Keywords: minimum number, Program HapBound, Program SHRUB, recombination. Note: http://dx.doi.org/10.1093/bioinformatics/bti1033.
Toggle abstract
"Motivation: We are interested in studying the evolution of DNA single nucleotide polymorphism sequences which have undergone (meiotic) recombination. For a given set of sequences, computing the minimum number of recombinations needed to explain the sequences (with one mutation per site) is a standard question of interest, but it has been shown to be NPhard, and previous algorithms that compute it exactly work either only on very small datasets or on problems with special structure. Results: In this paper, we present efficient, practical methods for computing both upper and lower bounds on the minimum number of needed recombinations, and for constructing evolutionary histories that explain the input sequences. We study in detail the efficiency and accuracy of these algorithms on both simulated and real data sets. The algorithms produce very close upper and lower bounds, which match exactly in a surprisingly wide range of data. Thus, with the use of new, very effective lower bounding methods and an efficient algorithm for computing upper bounds, this approach allows the efficient, exact computation of the minimum number of needed recombinations, with high frequency in a large range of data. When upper and lower bounds match, evolutionary histories found by our algorithm correspond to the most parsimonious histories. © The Author 2005. Published by Oxford University Press. All rights reserved."



Bhaskar DasGupta,
Sergio Ferrarini,
Uthra Gopalakrishnan and
Nisha Raj Paryani. Inapproximability results for the lateral gene transfer problem. In Proceedings of the Ninth Italian Conference on Theoretical Computer Science (ICTCS'05), Pages 182195, springer, 2005. Keywords: approximation, from rooted trees, from species tree, inapproximability, lateral gene transfer, parsimony, phylogenetic network, phylogeny. Note: http://www.cs.uic.edu/~dasgupta/resume/publ/papers/ictcsfinal.pdf.







Charles Choy,
Jesper Jansson,
Kunihiko Sadakane and
WingKin Sung. Computing the maximum agreement of phylogenetic networks. In Proceedings of Computing: the Tenth Australasian Theory Symposium (CATS'04), Vol. 91:134147 of Electronic Notes in Theoretical Computer Science, 2004. Keywords: dynamic programming, FPT, level k phylogenetic network, MASN, NP complete, phylogenetic network, phylogeny. Note: http://www.df.lth.se/~jj/Publications/masn6_CATS2004.pdf.
Toggle abstract
"We introduce the maximum agreement phylogenetic subnetwork problem (MASN) of finding a branching structure shared by a set of phylogenetic networks. We prove that the problem is NPhard even if restricted to three phylogenetic networks and give an O(n2)time algorithm for the special case of two level1 phylogenetic networks, where n is the number of leaves in the input networks and where N is called a levelf phylogenetic network if every biconnected component in the underlying undirected graph contains at most f nodes having indegree 2 in N. Our algorithm can be extended to yield a polynomialtime algorithm for two levelf phylogenetic networks N 1,N2 for any f which is upperbounded by a constant; more precisely, its running time is O(V(N1)·V(N 2)·4f), where V(Ni) denotes the set of nodes of Ni. © 2004 Published by Elsevier B.V."



Jesper Jansson and
WingKin Sung. Inferring a level1 phylogenetic network from a dense set of rooted triplets. In COCOON04, Vol. 3106:462471 of LNCS, springer, 2004. 1 comment Keywords: explicit network, from triplets, galled tree, level k phylogenetic network, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.df.lth.se/~jj/Publications/ipnrt6_COCOON2004.pdf.



Luay Nakhleh,
Tandy Warnow and
C. Randal Linder. Reconstructing reticulate evolution in species  theory and practice. In RECOMB04, Pages 337346, 2004. Keywords: from rooted trees, galled tree, phylogenetic network, phylogeny, polynomial, Program SPNet, reconstruction, software. Note: http://www.cs.rice.edu/~nakhleh/Papers/144nakhleh.pdf.



Mike Hallett,
Jens Lagergren and
Ali Tofigh. Simultaneous Identification of Duplications and Lateral Transfers. In RECOMB04, Pages 347356, 2004. Keywords: duplication, explicit network, FPT, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.nada.kth.se/~jensl/p164hallett.pdf.



Pawel Górecki. Reconciliation problems for duplication, loss and horizontal gene transfer. In RECOMB04, Pages 316325, 2004. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://ai.stanford.edu/~serafim/CS374_2004/Papers/Gorecki_Reconciliation.pdf.







Luay Nakhleh,
Jerry Sun,
Tandy Warnow,
C. Randal Linder,
Bernard M. E. Moret and
Anna Tholse. Towards the Development of Computational Tools for Evaluating Phylogenetic Network Reconstruction Methods. In PSB03, 2003. Keywords: distance between networks, evaluation, phylogenetic network, phylogeny, polynomial, tripartition distance. Note: http://www.cs.rice.edu/~nakhleh/Papers/psb03.pdf.





Pawel Górecki. Single step reconciliation algorithm for duplication, loss and horizontal gene transfer model. In ECCB03, 2003. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.inra.fr/eccb2003/posters/pdf/short/S_gorecki.ps.



David Bryant and
Vincent Moulton. NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks. In WABI02, Vol. 2452:375391 of LNCS, springer, 2002. Keywords: abstract network, circular split system, from distances, NeighborNet, phylogenetic network, phylogeny, Program SplitsTree, reconstruction, split network. Note: http://dx.doi.org/10.1007/3540457844_28.





David Posada,
Keith A. Crandall and
Edward C. Holmes. Recombination in Evolutionary Genomics. In ARG, Vol. 36:7597, 2002. Keywords: phylogenetic network, phylogeny, recombination, recombination detection, survey. Note: http://dx.doi.org/10.1146/annurev.genet.36.040202.111115.
Toggle abstract
"Recombination can be a dominant force in shaping genomes and associated phenotypes. To better understand the impact of recombination on genomic evolution, we need to be able to identify recombination in aligned sequences. We review bioinformatic approaches for detecting recombination and measuring recombination rates. We also examine the impact of recombination on the reconstruction of evolutionary histories and the estimation of population genetic parameters. Finally, we review the role of recombination in the evolutionary history of bacteria, viruses, and human mitochondria. We conclude by highlighting a number of areas for future development of tools to help quantify the role of recombination in genomic evolution."





Lusheng Wang,
Kaizhong Zhang and
Louxin Zhang. Perfect phylogenetic networks with recombination. In SAC01, Pages 4650, 2001. Keywords: from sequences, galled tree, NP complete, perfect, phylogenetic network, phylogeny, polynomial, recombination, reconstruction. Note: http://dx.doi.org/10.1145/372202.372271.







Vincent Berry and
David Bryant. Faster reliable phylogenetic analysis. In RECOMB99, Pages 5968, 1999. Keywords: abstract network, from quartets, phylogenetic network, phylogeny, polynomial, Program SplitsTree, reconstruction, split network, weakly compatible. Note: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.9151.



Bin Ma,
Lusheng Wang and
Ming Li. Fixed topology alignment with recombination. In CPM98, Vol. 1448:174188 of LNCS, springer, 1998. Keywords: approximation, explicit network, from network, from sequences, galled tree, inapproximability, phylogenetic network, phylogeny, recombination. Note: http://dx.doi.org/10.1007/BFb0030789.





HansJürgen Bandelt and
Andreas W. M. Dress. A relational approach to split decomposition. In
H.H. Bock,
W. Lenski and
M. M. Richter editors, Information Systems and Data Analysis, Proceedings of the 17th Annual Conference of the Gesellschaft Für Klassifikation (GFKL93), Vol. 42:123131 of Studies in Classification, Data Analysis, and Knowledge Organization, springer, 1994. Keywords: characterization, from quartets, phylogenetic network, weakly compatible.


