
Leo van Iersel,
Steven Kelk,
Giorgios Stamoulis,
Leen Stougie and
Olivier Boes. On unrooted and rootuncertain variants of several wellknown phylogenetic network problems. In ALG, Vol. 80(11):29933022, 2018. Keywords: explicit network, FPT, from network, from unrooted trees, NP complete, phylogenetic network, phylogeny, reconstruction, tree containment. Note: https://hal.inria.fr/hal01599716.





Mathias Weller. LinearTime Tree Containment in Phylogenetic Networks. In RECOMBCG18, Springer, 2018. Keywords: explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, reconstruction, reticulationvisible network, tree containment. Note: https://arxiv.org/abs/1702.06364.



Andrew R. Francis,
Katharina Huber,
Vincent Moulton and
Taoyang Wu. Bounds for phylogenetic network space metrics. In JOMB, Vol. 76(5):12291248, 2018. Keywords: bound, distance between networks, from network, NNI distance, phylogenetic network, phylogeny, SPR distance, TBR distance. Note: https://arxiv.org/abs/1702.05609.



Hussein A. Hejase,
Natalie VandePol,
Gregory A. Bonito and
Kevin J. Liu. Fast and accurate statistical inference of phylogenetic networks using largescale genomic sequence data. In RECOMBCG18, Springer, 2018. Keywords: explicit network, from rooted trees, heuristic, phylogenetic network, phylogeny, Program FastNet, reconstruction. Note: http://biorxiv.org/content/early/2017/05/01/132795, to appear.



Andreas Gunawan. Solving the Tree Containment Problem for Reticulationvisible Networks in Linear Time. In AlCoB18, Vol. 10849:2436 of LNCS, Springer, 2018. Keywords: explicit network, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: https://arxiv.org/abs/1702.04088.





Remie Janssen,
Mark Jones,
Péter L. Erdös,
Leo van Iersel and
Celine Scornavacca. Exploring the tiers of rooted phylogenetic network space using tail moves. In BMB, Vol. 80(8):21772208, 2018. Keywords: distance between networks, explicit network, from network, phylogenetic network, phylogeny, SPR distance. Note: https://arxiv.org/abs/1708.07656.



Sebastien Roch and
KunChieh Wang. Circular Networks from Distorted Metrics. In RECOMB18, Vol. 10812:167176 of LNCS, Springer, 2018. Keywords: abstract network, circular split system, from distances, NeighborNet, phylogenetic network, phylogeny, reconstruction, split network. Note: https://arxiv.org/abs/1707.05722.





Leo van Iersel,
Mark Jones and
Celine Scornavacca. Improved maximum parsimony models for phylogenetic networks. In SB, Vol. 67(3):518542, 2018. Keywords: explicit network, FPT, from sequences, NP complete, parsimony, phylogenetic network, phylogeny, reconstruction. Note: https://leovaniersel.files.wordpress.com/2017/12/improved_parsimony_networks.pdf.











Katharina Huber,
Leo van Iersel,
Vincent Moulton,
Celine Scornavacca and
Taoyang Wu. Reconstructing phylogenetic level1 networks from nondense binet and trinet sets. In ALG, Vol. 77(1):173200, 2017. Keywords: explicit network, FPT, from binets, from subnetworks, from trinets, NP complete, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://arxiv.org/abs/1411.6804.



Bingxin Lu,
Louxin Zhang and
Hon Wai Leong. A program to compute the soft RobinsonFoulds distance between phylogenetic networks. In APBC17, Vol. 18(Suppl. 2):111 of BMC Genomics, 2017. Keywords: cluster containment, distance between networks, explicit network, exponential algorithm, from network, phylogenetic network, phylogeny, Program iceluPhyloNetwork. Note: http://dx.doi.org/10.1186/s1286401735005.



Magnus Bordewich,
Simone Linz and
Charles Semple. Lost in space? Generalising subtree prune and regraft to spaces of phylogenetic networks. In JTB, Vol. 423:112, 2017. Keywords: distance between networks, explicit network, phylogenetic network, phylogeny, reticulationvisible network, SPR distance, tree child network, treebased network. Note: https://simonelinz.files.wordpress.com/2017/04/bls171.pdf.



Jesper Jansson,
Ramesh Rajaby and
WingKin Sung. An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees. In AlCoB17, Vol. 10252:115126 of LNCS, Springer, 2017. Keywords: distance between networks, from network, phylogenetic network, phylogeny, polynomial, reconstruction, triplet distance. Note: .



Leo van Iersel,
Vincent Moulton,
Eveline De Swart and
Taoyang Wu. Binets: fundamental building blocks for phylogenetic networks. In BMB, Vol. 79(5):11351154, 2017. Keywords: approximation, explicit network, from binets, from subnetworks, galled tree, level k phylogenetic network, NP complete, phylogenetic network, phylogeny, reconstruction. Note: http://dx.doi.org/10.1007/s1153801702754.



Philippe Gambette,
Leo van Iersel,
Mark Jones,
Manuel Lafond,
Fabio Pardi and
Celine Scornavacca. Rearrangement Moves on Rooted Phylogenetic Networks. In PLoS Computational Biology, Vol. 13(8):e1005611.121, 2017. Keywords: distance between networks, explicit network, from network, NNI distance, phylogenetic network, phylogeny, SPR distance. Note: https://halupecupem.archivesouvertes.fr/hal01572624/en/.



Han Lai,
Maureen Stolzer and
Dannie Durand. Fast Heuristics for Resolving Weakly Supported Branches Using Duplication, Transfers, and Losses. In RECOMBCG17, Vol. 10562:298320 of LNCS, Springer, 2017. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, loss, phylogenetic network, phylogeny, Program Notung, reconstruction.







Janosch Döcker,
Leo van Iersel,
Steven Kelk and
Simone Linz. Deciding the existence of a cherrypicking sequence is hard on two trees. 2017. Keywords: cherrypicking, explicit network, hybridization, minimum number, NP complete, phylogenetic network, phylogeny, reconstruction, temporalhybridization number, time consistent network, tree child network. Note: https://arxiv.org/abs/1712.02965.



KuangYu Chang,
Yun Cui,
SiuMing Yiu and
WingKai Hon. Reconstructing OneArticulated Networks with Distance Matrices. In ISBRA17, Vol. 10330:3445 of LNCS, Springer, 2017. Keywords: explicit network, from distances, kreticulated, phylogenetic network, phylogeny, reconstruction. Note: https://link.springer.com/content/pdf/10.1007%2F9783319595757.pdf#page=100.



Leo van Iersel,
Steven Kelk,
Nela Lekic,
Chris Whidden and
Norbert Zeh. Hybridization Number on Three Rooted Binary Trees is EPT. In SIDMA, Vol. 30(3):16071631, 2016. Keywords: agreement forest, explicit network, FPT, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, reconstruction. Note: http://arxiv.org/abs/1402.2136.



Steven Kelk,
Leo van Iersel,
Celine Scornavacca and
Mathias Weller. Phylogenetic incongruence through the lens of Monadic Second Order logic. In JGAA, Vol. 20(2):189215, 2016. Keywords: agreement forest, explicit network, FPT, from rooted trees, hybridization, minimum number, MSOL, phylogenetic network, phylogeny, reconstruction. Note: http://jgaa.info/accepted/2016/KelkIerselScornavaccaWeller2016.20.2.pdf.



Andreas Gunawan,
Bhaskar DasGupta and
Louxin Zhang. Locating a Tree in a ReticulationVisible Network in Cubic Time. In RECOMB2016, Vol. 9649:266 of LNBI, Springer, 2016. Keywords: cluster containment, explicit network, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: http://arxiv.org/abs/1507.02119.



Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time. In IWOCA15, Vol. 9538:197208 of LNCS, springer, 2016. Keywords: explicit network, from network, from rooted trees, genetically stable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://halupecupem.archivesouvertes.fr/hal01226035 .







Philippe Gambette,
Leo van Iersel,
Steven Kelk,
Fabio Pardi and
Celine Scornavacca. Do branch lengths help to locate a tree in a phylogenetic network? In BMB, Vol. 78(9):17731795, 2016. Keywords: branch length, explicit network, FPT, from network, from rooted trees, NP complete, phylogenetic network, phylogeny, pseudopolynomial, time consistent network, tree containment, tree sibling network. Note: http://arxiv.org/abs/1607.06285.





James Oldman,
Taoyang Wu,
Leo van Iersel and
Vincent Moulton. TriLoNet: Piecing together small networks to reconstruct reticulate evolutionary histories. In MBE, Vol. 33(8):21512162, 2016. Keywords: explicit network, from subnetworks, from trinets, galled tree, phylogenetic network, phylogeny, Program LEV1ATHAN, Program TriLoNet, reconstruction.





Leo van Iersel,
Steven Kelk and
Celine Scornavacca. Kernelizations for the hybridization number problem on multiple nonbinary trees. In JCSS, Vol. 82(6):10751089, 2016. Keywords: explicit network, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Treeduce, reconstruction. Note: https://arxiv.org/abs/1311.4045v3.



Mareike Fischer,
Leo van Iersel,
Steven Kelk and
Celine Scornavacca. On Computing The Maximum Parsimony Score Of A Phylogenetic Network. In SIDMA, Vol. 29(1):559585, 2015. Keywords: APX hard, cluster containment, explicit network, FPT, from network, from sequences, integer linear programming, level k phylogenetic network, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, Program MPNet, reconstruction, software. Note: http://arxiv.org/abs/1302.2430.



Katharina Huber,
Leo van Iersel,
Vincent Moulton and
Taoyang Wu. How much information is needed to infer reticulate evolutionary histories? In Systematic Biology, Vol. 64(1):102111, 2015. Keywords: explicit network, from network, from rooted trees, from subnetworks, from trinets, identifiability, phylogenetic network, phylogeny, reconstruction, uniqueness. Note: http://dx.doi.org/10.1093/sysbio/syu076.





Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Locating a Tree in A Phylogenetic Network in Quadratic Time. In RECOMB15, Vol. 9029:96107 of LNCS, Springer, 2015. Keywords: evaluation, explicit network, from network, from rooted trees, genetically stable network, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://hal.archivesouvertes.fr/hal01116231/en.





Quan Nguyen and
Teemu Roos. Likelihoodbased inference of phylogenetic networks from sequence data by PhyloDAG. In ALCOB15, Vol. 9199:126140 of LNCS, springer, 2015. Keywords: BIC, explicit network, from sequences, likelihood, phylogenetic network, phylogeny, Program PhyloDAG, reconstruction, software. Note: http://www.cs.helsinki.fi/u/ttonteri/pub/alcob2015.pdf.





Jittat Fakcharoenphol,
Tanee Kumpijit and
Attakorn Putwattana. A Faster Algorithm for the Tree Containment Problem for Binary Nearly Stable Phylogenetic Networks. In Proceedings of the The 12th International Joint Conference on Computer Science and Software Engineering (JCSSE'15), Pages 337342, IEEE, 2015. Keywords: dynamic programming, explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment.



Misagh Kordi and
Mukul S. Bansal. On the Complexity of DuplicationTransferLoss Reconciliation with NonBinary Gene Trees. In ISBRA15, Vol. 9096:187198 of LNCS, springer, 2015. Keywords: duplication, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, phylogenetic network, phylogeny, reconstruction. Note: http://compbio.engr.uconn.edu/papers/Kordi_ISBRA2015.pdf.



Yun Yu and
Luay Nakhleh. A DistanceBased Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378389 of LNCS, springer, 2015. Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction. Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhlehISBRA15.pdf.





Yun Yu and
Luay Nakhleh. A maximum pseudolikelihood approach for phylogenetic networks. In RECOMBCG15, Vol. 16(Suppl 10)(S10):110 of BMC Genomics, BioMed Central, 2015. Keywords: explicit network, from rooted trees, hybridization, incomplete lineage sorting, likelihood, phylogenetic network, phylogeny, Program PhyloNet, reconstruction, tripartition distance. Note: http://dx.doi.org/10.1186/1471216416S10S10.





Leo van Iersel,
Steven Kelk,
Nela Lekic and
Leen Stougie. Approximation algorithms for nonbinary agreement forests. In SIDMA, Vol. 28(1):4966, 2014. Keywords: agreement forest, approximation, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, reconstruction. Note: http://arxiv.org/abs/1210.3211.
Toggle abstract
"Given two rooted phylogenetic trees on the same set of taxa X, the Maximum Agreement Forest (maf) problem asks to find a forest that is, in a certain sense, common to both trees and has a minimum number of components. The Maximum Acyclic Agreement Forest (maaf) problem has the additional restriction that the components of the forest cannot have conflicting ancestral relations in the input trees. There has been considerable interest in the special cases of these problems in which the input trees are required to be binary. However, in practice, phylogenetic trees are rarely binary, due to uncertainty about the precise order of speciation events. Here, we show that the general, nonbinary version of maf has a polynomialtime 4approximation and a fixedparameter tractable (exact) algorithm that runs in O(4opoly(n)) time, where n = X and k is the number of components of the agreement forest minus one. Moreover, we show that a capproximation algorithm for nonbinary maf and a dapproximation algorithm for the classical problem Directed Feedback Vertex Set (dfvs) can be combined to yield a d(c+3)approximation for nonbinary maaf. The algorithms for maf have been implemented and made publicly available. © 2014 Society for Industrial and Applied Mathematics."



Leo van Iersel and
Vincent Moulton. Trinets encode treechild and level2 phylogenetic networks. In JOMB, Vol. 68(7):17071729, 2014. Keywords: explicit network, from subnetworks, from trinets, level k phylogenetic network, phylogenetic network, phylogeny, reconstruction. Note: http://arxiv.org/abs/1210.0362.
Toggle abstract
"Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that level1 phylogenetic networks are encoded by their trinets, and also conjectured that all "recoverable" rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level2 networks and binary treechild networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets. © 2013 SpringerVerlag Berlin Heidelberg."



Ran LibeskindHadas,
YiChieh Wu,
Mukul S. Bansal and
Manolis Kellis. Paretooptimal phylogenetic tree reconciliation. In ISMB14, Vol. 30:i87i95 of BIO, 2014. Keywords: duplication, lateral gene transfer, loss, phylogenetic network, phylogeny, polynomial, Program Xscape, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/btu289.
Toggle abstract
"Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Paretooptimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. © 2014 The Author. Published by Oxford University Press. All rights reserved."



Leo van Iersel,
Steven Kelk,
Nela Lekic and
Celine Scornavacca. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees. In BMCB, Vol. 15(127):112, 2014. Keywords: agreement forest, approximation, explicit network, from rooted trees, phylogenetic network, phylogeny, Program CycleKiller, Program TerminusEst, reconstruction. Note: http://dx.doi.org/10.1186/1471210515127.





Leo van Iersel and
Simone Linz. A quadratic kernel for computing the hybridization number of multiple trees. In IPL, Vol. 113:318323, 2013. Keywords: explicit network, FPT, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Clustistic, Program MaafB, Program PIRN, reconstruction. Note: http://arxiv.org/abs/1203.4067, poster.
Toggle abstract
"It has recently been shown that the NPhard problem of calculating the minimum number of hybridization events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network is fixedparameter tractable if an instance of the problem consists of precisely two such trees. In this paper, we show that this problem remains fixedparameter tractable for an arbitrarily large set of rooted binary phylogenetic trees. In particular, we present a quadratic kernel. © 2013 Elsevier B.V."



Chris Whidden,
Robert G. Beiko and
Norbert Zeh. FixedParameter Algorithms for Maximum Agreement Forests. In SICOMP, Vol. 42(4):14311466, 2013. Keywords: agreement forest, explicit network, FPT, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, Program HybridInterleave, reconstruction, SPR distance. Note: http://arxiv.org/abs/1108.2664, slides.
Toggle abstract
"We present new and improved fixedparameter algorithms for computing maximum agreement forests of pairs of rooted binary phylogenetic trees. The size of such a forest for two trees corresponds to their subtree pruneandregraft distance and, if the agreement forest is acyclic, to their hybridization number. These distance measures are essential tools for understanding reticulate evolution. Our algorithm for computing maximum acyclic agreement forests is the first depthbounded search algorithm for this problem. Our algorithms substantially outperform the best previous algorithms for these problems. © 2013 Society for Industrial and Applied Mathematics."



Yufeng Wu. An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees. In RECOMB13, Vol. 7821:291303 of LNCS, springer, 2013. Keywords: explicit network, exponential algorithm, from rooted trees, phylogenetic network, phylogeny, Program PIRN, reconstruction. Note: http://www.engr.uconn.edu/~ywu/Papers/ExactNetRecomb2013.pdf.
Toggle abstract
"Phylogenetic network is a model for reticulate evolution. Hybridization network is one type of phylogenetic network for a set of discordant gene trees, and "displays" each gene tree. A central computational problem on hybridization networks is: given a set of gene trees, reconstruct the minimum (i.e. most parsimonious) hybridization network that displays each given gene tree. This problem is known to be NPhard, and existing approaches for this problem are either heuristics or make simplifying assumptions (e.g. work with only two input trees or assume some topological properties). In this paper, we develop an exact algorithm (called PIRNC ) for inferring the minimum hybridization networks from multiple gene trees. The PIRNC algorithm does not rely on structural assumptions. To the best of our knowledge, PIRN C is the first exact algorithm for this formulation. When the number of reticulation events is relatively small (say four or fewer), PIRNC runs reasonably efficient even for moderately large datasets. For building more complex networks, we also develop a heuristic version of PIRNC called PIRNCH. Simulation shows that PIRNCH usually produces networks with fewer reticulation events than those by an existing method. © 2013 SpringerVerlag."



Mukul S. Bansal,
Eric J. Alm and
Manolis Kellis. Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss. In RECOMB13, Vol. 7821:113 of LNCS, springer, 2013. Keywords: duplication, from rooted trees, from species tree, loss, phylogenetic network, phylogeny, polynomial, Program RANGERDTL, reconstruction. Note: http://people.csail.mit.edu/mukul/Bansal_RECOMB2013.pdf.
Toggle abstract
"Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While DuplicationLoss (DL) reconciliation leads to a unique maximumparsimony solution, DuplicationTransferLoss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult the infer the true evolutionary history of the gene family. Here, we present an effective, efficient, and scalable method for dealing with this fundamental problem in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn 2) time, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mapping and event assignments, and to investigate the impact of varying event costs. © 2013 SpringerVerlag."



Hoa Vu,
Francis Chin,
WingKai Hon,
Henry Leung,
Kunihiko Sadakane,
WingKin Sung and
SiuMing Yiu. Reconstructing kReticulated Phylogenetic Network from a Set of Gene Trees. In ISBRA13, Vol. 7875:112124 of LNCS, springer, 2013. Keywords: from rooted trees, kreticulated, phylogenetic network, phylogeny, polynomial, Program ARTNET, Program CMPT, reconstruction. Note: http://grid.cs.gsu.edu/~xguo9/publications/2013_Cloud%20computing%20for%20de%20novo%20metagenomic%20sequence%20assembly.pdf#page=123.
Toggle abstract
"The time complexity of existing algorithms for reconstructing a levelx phylogenetic network increases exponentially in x. In this paper, we propose a new classification of phylogenetic networks called kreticulated network. A kreticulated network can model all levelk networks and some levelx networks with x > k. We design algorithms for reconstructing kreticulated network (k = 1 or 2) with minimum number of hybrid nodes from a set of m binary trees, each with n leaves in O(mn 2) time. The implication is that some levelx networks with x > k can now be reconstructed in a faster way. We implemented our algorithm (ARTNET) and compared it with CMPT. We show that ARTNET outperforms CMPT in terms of running time and accuracy. We also consider the case when there does not exist a 2reticulated network for the input trees. We present an algorithm computing a maximum subset of the species set so that a new set of subtrees can be combined into a 2reticulated network. © 2013 SpringerVerlag."



Eric Bapteste,
Leo van Iersel,
Axel Janke,
Scott Kelchner,
Steven Kelk,
James O. McInerney,
David A. Morrison,
Luay Nakhleh,
Mike Steel,
Leen Stougie and
James B. Whitfield. Networks: expanding evolutionary thinking. In Trends in Genetics, Vol. 29(8):439441, 2013. Keywords: abstract network, explicit network, phylogenetic network, phylogeny, reconstruction. Note: http://bioinf.nuim.ie/wpcontent/uploads/2013/06/BaptesteTiG2013.pdf.
Toggle abstract
"Networks allow the investigation of evolutionary relationships that do not fit a tree model. They are becoming a leading tool for describing the evolutionary relationships between organisms, given the comparative complexities among genomes. © 2013 Elsevier Ltd."









Steven Kelk,
Celine Scornavacca and
Leo van Iersel. On the elusiveness of clusters. In TCBB, Vol. 9(2):517534, 2012. Keywords: explicit network, from clusters, from rooted trees, from triplets, level k phylogenetic network, phylogenetic network, phylogeny, Program Clustistic, reconstruction, software. Note: http://arxiv.org/abs/1103.1834.



Steven Kelk,
Leo van Iersel,
Nela Lekic,
Simone Linz,
Celine Scornavacca and
Leen Stougie. Cycle killer... qu'estce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set. In SIDMA, Vol. 26(4):16351656, 2012. Keywords: agreement forest, approximation, explicit network, from rooted trees, minimum number, phylogenetic network, phylogeny, Program CycleKiller, reconstruction. Note: http://arxiv.org/abs/1112.5359, about the title.
Toggle abstract
"We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa X has a constant factor polynomialtime approximation if and only if the problem of computing a minimumsize feedback vertex set in a directed graph (DFVS) has a constant factor polynomialtime approximation. The latter problem, which asks for a minimum number of vertices to be removed from a directed graph to transform it into a directed acyclic graph, is one of the problems in Karp's seminal 1972 list of 21 NPcomplete problems. Despite considerable attention from the combinatorial optimization community, it remains to this day unknown whether a constant factor polynomialtime approximation exists for DFVS. Our result thus places the (in)approximability of hybridization number in a much broader complexity context, and as a consequence we obtain that it inherits inapproximability results from the problem Vertex Cover. On the positive side, we use results from the DFVS literature to give an O(log r log log r) approximation for the hybridization number where r is the correct value. Copyright © by SIAM."





Hyun Jung Park and
Luay Nakhleh. MURPAR: A fast heuristic for inferring parsimonious phylogenetic networks from multiple gene trees. In ISBRA12, Vol. 7292:213224 of LNCS, springer, 2012. Keywords: explicit network, from unrooted trees, heuristic, phylogenetic network, phylogeny, reconstruction, software. Note: https://www.researchgate.net/profile/Hyun_Jung_Park2/publication/262318595_MURPAR_A_Fast_Heuristic_for_Inferring_Parsimonious_Phylogenetic_Networks_from_Multiple_Gene_Trees/links/54b7e7b50cf269d8cbf58cc4.pdf.
Toggle abstract
"Phylogenetic networks provide a graphical representation of evolutionary histories that involve nontreelike evolutionary events, such as horizontal gene transfer (HGT). One approach for inferring phylogenetic networks is based on reconciling gene trees, assuming all incongruence among the gene trees is due to HGT. Several mathematical results and algorithms, both exact and heuristic, have been introduced to construct and analyze phylogenetic networks. Here, we address the computational problem of inferring phylogenetic networks with minimum reticulations from a collection of gene trees. As this problem is known to be NPhard even for a pair of gene trees, the problem at hand is very hard. In this paper, we present an efficient heuristic, MURPAR, for inferring a phylogenetic network from a collection of gene trees by using pairwise reconciliations of trees in the collection. Given the development of efficient and accurate methods for pairwise gene tree reconciliations, MURPAR inherits this efficiency and accuracy. Further, the method includes a formulation for combining pairwise reconciliations that is naturally amenable to an efficient integer linear programming (ILP) solution. We show that MURPAR produces more accurate results than other methods and is at least as fast, when run on synthetic and biological data. We believe that our method is especially important for rapidly obtaining estimates of genomescale evolutionary histories that can be further refined by more detailed and computeintensive methods. © 2012 SpringerVerlag."



Pawel Górecki and
Jerzy Tiuryn. Inferring evolutionary scenarios in the duplication, loss and horizontal gene transfer model. In Logic and Program Semantics, Vol. 7230:83105 of LNCS, springer, 2012. Keywords: duplication, explicit network, lateral gene transfer, loss, phylogenetic network, phylogeny, reconstruction. Note: http://dx.doi.org/10.1007/9783642294853_7.
Toggle abstract
"An Htree is a formal model of evolutionary scenario. It can be used to represent any processes with gene duplication and loss, horizontal gene transfer (HGT) and speciation events. The model of Htrees, introduced in [26], is an extension of the duplicationloss model (DLmodel). Similarly to its ancestor, it has a number of interesting mathematical and biological properties. It is, however, more computationally complex than the DLmodel. In this paper, we primarily address the problem of inferring Htrees that are compatible with a given gene tree and a given phylogeny of species with HGTs. These results create a mathematical and computational foundation for a more general and practical problem of inferring HGTs from given gene and species trees with HGTs. We also demonstrate how our model can be used to support HGT hypotheses based on empirical data sets. © 2012 SpringerVerlag Berlin Heidelberg."



Mukul S. Bansal,
Eric J. Alm and
Manolis Kellis. Efficient Algorithms for the Reconciliation Problem with Gene Duplication, Horizontal Transfer, and Loss. In ISMB12, Vol. 28(12):i283i291 of BIO, 2012. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, loss, phylogenetic network, phylogeny, Program Angst, Program Mowgli, Program RANGERDTL, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/bts225.
Toggle abstract
"Motivation: Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, where the input consists of a gene family phylogeny and the corresponding species phylogeny, and the goal is to reconcile the two by postulating speciation, gene duplication, horizontal gene transfer and gene loss events. This reconciliation problem is referred to as duplicationtransferloss (DTL) reconciliation and has been extensively studied in the literature. Yet, even the fastest existing algorithms for DTL reconciliation are too slow for reconciling large gene families and for use in more sophisticated applications such as gene tree or species tree reconstruction.Results: We present two new algorithms for the DTL reconciliation problem that are dramatically faster than existing algorithms, both asymptotically and in practice. We also extend the standard DTL reconciliation model by considering distancedependent transfer costs, which allow for more accurate reconciliation and give an efficient algorithm for DTL reconciliation under this extended model. We implemented our new algorithms and demonstrated up to 100 000fold speedup over existing methods, using both simulated and biological datasets. This dramatic improvement makes it possible to use DTL reconciliation for performing rigorous evolutionary analyses of large gene families and enables its use in advanced reconciliationbased gene and species tree reconstruction methods. © The Author(s) 2012. Published by Oxford University Press."



AnChiang Chu,
Jesper Jansson,
Richard Lemence,
Alban Mancheron and
KunMao Chao. Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics. In TAMC12, Vol. 7287:177188 of LNCS, springer, 2012. Keywords: from triplets, galled network, level k phylogenetic network, phylogenetic network. Note: preliminary version.
Toggle abstract
"We study the asymptotic behavior of a new type of maximization recurrence, defined as follows. Let k be a positive integer and p k(x) a polynomial of degree k satisfying p k(0) = 0. Define A 0 = 0 and for n ≥ 1, let A n = max 0≤i<n{A i+n kp k(i/n)}. We prove that lim n→∞A n/n n = sup{pk(x)/1x k : 0≤x<1}. We also consider two closely related maximization recurrences S n and S′ n, defined as S 0 = S′ 0 = 0, and for n ≥ 1, S n = max 0≤i<n{S i + i(ni)(ni1)/2} and S′ n = max 0≤i<n{S′ i + ( 3 ni) + 2i( 2 ni) + (ni)( 2 i)}. We prove that lim n→∞ S′n/3( 3 n) = 2(√31)/3 ≈ 0.488033..., resolving an open problem from Bioinformatics about rooted triplets consistency in phylogenetic networks. © 2012 SpringerVerlag."





Jesper Jansson and
Andrzej Lingas. Computing the rooted triplet distance between galled trees by counting triangles. In CPM12, Vol. 7354:385398 of LNCS, springer, 2012. Keywords: distance between networks, explicit network, from network, galled tree, phylogenetic network, phylogeny, polynomial, triplet distance. Note: http://www.df.lth.se/~jj/Publications/d_rt_for_Galled_Trees5_CPM_2012.pdf.
Toggle abstract
"We consider a generalization of the rooted triplet distance between two phylogenetic trees to two phylogenetic networks. We show that if each of the two given phylogenetic networks is a socalled galled tree with n leaves then the rooted triplet distance can be computed in o(n 2.688) time. Our upper bound is obtained by reducing the problem of computing the rooted triplet distance to that of counting monochromatic and almost monochromatic triangles in an undirected, edgecolored graph. To count different types of colored triangles in a graph efficiently, we extend an existing technique based on matrix multiplication and obtain several new related results that may be of independent interest. © 2012 SpringerVerlag."



Hyun Jung Park and
Luay Nakhleh. Inference of reticulate evolutionary histories by maximum likelihood:
The performance of information criteria. In RECOMBCG'12, Vol. 13(suppl 19):S12 of BMCB, 2012. Keywords: AIC, BIC, explicit network, heuristic, likelihood, phylogenetic network, phylogeny, reconstruction, statistical model. Note: http://www.biomedcentral.com/14712105/13/S19/S12.



Maureen Stolzer,
Han Lai,
Minli Xu,
Deepa Sathaye,
Benjamin Vernot and
Dannie Durand. Inferring Duplications, Losses, Transfers, and Incomplete Lineage Sorting with NonBinary Species Trees. In ECCB12, Vol. 28(18):i409i415 of BIO, 2012. Keywords: duplication, explicit network, from rooted trees, lateral gene transfer, loss, phylogenetic network, phylogeny, Program Notung, reconstruction. Note: http://dx.doi.org/10.1093/bioinformatics/bts386.
Toggle abstract
"Motivation: Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions.The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. Results: We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile nonbinary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixedparameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. © The Author(s) 2012. Published by Oxford University Press."



Devin Robert Bickner. On normal networks. PhD thesis, Iowa State University, U.S.A., 2012. Keywords: distance between networks, explicit network, from network, from trees, normal network, phylogenetic network, phylogeny, polynomial, reconstruction, SPR distance. Note: http://gradworks.umi.com/3511361.pdf.



ThiHau Nguyen,
JeanPhilippe Doyon,
Stéphanie Pointet,
AnneMuriel Chifolleau Arigon,
Vincent Ranwez and
Vincent Berry. Accounting for Gene Tree Uncertainties Improves Gene Trees and Reconciliation Inference. In WABI12, Vol. 7534:123134 of LNCS, springer, 2012. Keywords: duplication, heuristic, lateral gene transfer, phylogenetic network, phylogeny, Program Mowgli, reconstruction. Note: http://hal.archivesouvertes.fr/hal00718347/en/.
Toggle abstract
"We propose a reconciliation heuristic accounting for gene duplications, losses and horizontal transfers that specifically takes into account the uncertainties in the gene tree. Rearrangements are tried for gene tree edges that are weakly supported, and are accepted whenever they improve the reconciliation cost. We prove useful properties on the dynamic programming matrix used to compute reconciliations, which allows to speedup the tree space exploration when rearrangements are generated by Nearest Neighbor Interchanges (NNI) edit operations. Experimental results on simulated and real data confirm that running times are greatly reduced when considering the abovementioned optimization in comparison to the naïve rearrangement procedure. Results also show that gene trees modified by such NNI rearrangements are closer to the correct (simulated) trees and lead to more correct event predictions on average. The program is available at http://www.atgcmontpellier.fr/ Mowgli/. © 2012 SpringerVerlag."



Katharina Huber,
Vincent Moulton,
Andreas Spillner,
Sabine Storandt and
Radoslaw Suchecki. Computing a consensus of multilabeled trees. In ALENEX12, Pages 8492, 2012. Keywords: duplication, explicit network, exponential algorithm, phylogenetic network, phylogeny. Note: http://siam.omnibooksonline.com/2012ALENEX/data/papers/020.pdf.
Toggle abstract
In this paper we consider two challenging problems that arise in the context of computing a consensus of a collection of multilabeled trees, namely (1) selecting a compatible collection of clusters on a multiset from an ordered list of such clusters and (2) optimally refining high degree vertices in a multilabeled tree. Forming such a consensus is part of an approach to reconstruct the evolutionary history of a set of species for which events such as genome duplication and hybridization have occurred in the past. We present exact algorithms for solving (1) and (2) that have an exponential runtime in the worst case. To give some impression of their performance in practice, we apply them to simulated input and to a real biological data set highlighting the impact of several structural properties of the input on the performance.



Cayla McBee. Generalizing Fourier Calculus on Evolutionary Trees to Splits Networks. In ISPAN'12, Pages 149155, 2012. Keywords: abstract network, from sequences, phylogenetic network, phylogeny, split network, statistical model.
Toggle abstract
"Biologists have been interested in Phylogenetics, the study of evolutionary relatedness among various groups of organisms, for more than 140 years. In spite of this, it has only been in the last 40 years that advances in technology and the availability of DNA sequences have led to statistical, computational and algorithmic work on determining evolutionary relatedness between organisms. One method of determining historical relationships between organisms is to assume a group based evolutionary model and use a discrete Fourier transform. The 1993 paper 'Fourier Calculus on Evolutionary Trees' by L.A. Szekely, M.A. Steel and P.L. Erdos outlines this process. The transform presented in Szekely et al provides an invertible relationship between phylogenetic trees and expected frequencies of nucleotide patterns in nucleotide sequences. This implies that given a set of nucleotide sequences from various organisms it is possible to construct a phylogenetic tree that represents the historical relationships of those organisms. Some scenarios are poorly described by phylogenetic trees and there are biological and statistical reasons for using networks to model phylogenetic relationships. Given this motivation I have generalized Szekely et al's result to apply to a specific type of phylogenetic network known as a splits network. © 2012 IEEE."



Fenglou Mao,
David Williams,
Olga Zhaxybayeva,
Maria S. Poptsova,
Pascal Lapierre,
J. Peter Gogarten and
Ying Xu. Quartet decomposition server: a platform for analyzing phylogenetic trees. In BMCB, Vol. 13:123, 2012. Keywords: abstract network, from quartets, phylogenetic network, phylogeny, Program Quartet Decomposition, reconstruction, software, split network.
Toggle abstract
"Background: The frequent exchange of genetic material among prokaryotes means that extracting a majority or plurality phylogenetic signal from many gene families, and the identification of gene families that are in significant conflict with the plurality signal is a frequent task in comparative genomics, and especially in phylogenomic analyses. Decomposition of gene trees into embedded quartets (unrooted trees each with four taxa) is a convenient and statistically powerful technique to address this challenging problem. This approach was shown to be useful in several studies of completely sequenced microbial genomes.Results: We present here a web server that takes a collection of gene phylogenies, decomposes them into quartets, generates a Quartet Spectrum, and draws a split network. Users are also provided with various data download options for further analyses. Each gene phylogeny is to be represented by an assessment of phylogenetic information content, such as sets of trees reconstructed from bootstrap replicates or sampled from a posterior distribution. The Quartet Decomposition server is accessible at http://quartets.uga.edu.Conclusions: The Quartet Decomposition server presented here provides a convenient means to perform Quartet Decomposition analyses and will empower users to find statistically supported phylogenetic conflicts. © 2012 Mao et al.; licensee BioMed Central Ltd."



Donovan H. Parks and
Robert G. Beiko. Measuring Community Similarity with Phylogenetic Networks. In MBE, Vol. 29(12):39473958, 2012. Keywords: abstract network, diversity, phylogenetic network, phylogeny, split network. Note: poster available at http://dparks.wdfiles.com/localfiles/publications/SMBE_BetaDiversity_2011.pdf.
Toggle abstract
"Environmental drivers of biodiversity can be identified by relating patterns of community similarity to ecological factors. Community variation has traditionally been assessed by considering changes in species composition and more recently by incorporating phylogenetic information to account for the relative similarity of taxa. Here, we describe how an important class of measures including BrayCurtis, Canberra, and UniFrac can be extended to allow community variation to be computed on a phylogenetic network. We focus on phylogenetic split systems, networks that are produced by the widely used median network and neighbornet methods, which can represent incongruence in the evolutionary history of a set of taxa. Calculating β diversity over a split system provides a measure of community similarity averaged over uncertainty or conflict in the available phylogenetic signal. Our freely available software, Network Diversity, provides 11 qualitative (presenceabsence, unweighted) and 14 quantitative (weighted) networkbased measures of community similarity that model different aspects of community richness and evenness. We demonstrate the broad applicability of networkbased diversity approaches by applying them to three distinct data sets: pneumococcal isolates from distinct geographic regions, human mitochondrial DNA data from the Indonesian island of Nias, and proteorhodopsin sequences from the Sargasso and Mediterranean Seas. Our results show that major expected patterns of variation for these data sets are recovered using networkbased measures, which indicates that these patterns are robust to phylogenetic uncertainty and conflict. Nonetheless, networkbased measures of community similarity can differ substantially from measures ignoring phylogenetic relationships or from treebased measures when incongruent signals are present in the underlying data. Networkbased measures provide a methodology for assessing the robustness of βdiversity results in light of incongruent phylogenetic signal and allow β diversity to be calculated over widely used network structures such as median networks. © 2012 The Author 2012."



Katharina Huber,
Leo van Iersel,
Steven Kelk and
Radoslaw Suchecki. A Practical Algorithm for Reconstructing Level1 Phylogenetic Networks. In TCBB, Vol. 8(3):607620, 2011. Keywords: explicit network, from triplets, galled tree, generation, heuristic, phylogenetic network, phylogeny, Program LEV1ATHAN, Program Lev1Generator, reconstruction, software. Note: http://arxiv.org/abs/0910.4067.
Toggle abstract
"Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level1 phylogenetic networksa type of network slightly more general than a phylogenetic treefrom triplets. Our algorithm has been made publicly available as the program Lev1athan. It combines ideas from several known theoretical algorithms for phylogenetic tree and network reconstruction with two novel subroutines. Namely, an exponentialtime exact and a greedy algorithm both of which are of independent theoretical interest. Most importantly, Lev1athan runs in polynomial time and always constructs a level1 network. If the data are consistent with a phylogenetic tree, then the algorithm constructs such a tree. Moreover, if the input triplet set is dense and, in addition, is fully consistent with some level1 network, it will find such a network. The potential of Lev1athan is explored by means of an extensive simulation study and a biological data set. One of our conclusions is that Lev1athan is able to construct networks consistent with a high percentage of input triplets, even when these input triplets are affected by a low to moderate level of noise. © 2011 IEEE."



Leo van Iersel and
Steven Kelk. Constructing the Simplest Possible Phylogenetic Network from Triplets. In ALG, Vol. 60(2):207235, 2011. Keywords: explicit network, from triplets, galled tree, level k phylogenetic network, minimum number, phylogenetic network, phylogeny, polynomial, Program Marlon, Program Simplistic. Note: http://dx.doi.org/10.1007/s0045300993330.
Toggle abstract
"A phylogenetic network is a directed acyclic graph that visualizes an evolutionary history containing socalled reticulations such as recombinations, hybridizations or lateral gene transfers. Here we consider the construction of a simplest possible phylogenetic network consistent with an input set T, where T contains at least one phylogenetic tree on three leaves (a triplet) for each combination of three taxa. To quantify the complexity of a network we consider both the total number of reticulations and the number of reticulations per biconnected component, called the level of the network. We give polynomialtime algorithms for constructing a level1 respectively a level2 network that contains a minimum number of reticulations and is consistent with T (if such a network exists). In addition, we show that if T is precisely equal to the set of triplets consistent with some network, then we can construct such a network with smallest possible level in time O(T k+1), if k is a fixed upper bound on the level of the network. © 2009 The Author(s)."



Leo van Iersel and
Steven Kelk. When two trees go to war. In JTB, Vol. 269(1):245255, 2011. Keywords: APX hard, explicit network, from clusters, from rooted trees, from sequences, from triplets, level k phylogenetic network, minimum number, NP complete, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://arxiv.org/abs/1004.5332.
Toggle abstract
"Rooted phylogenetic networks are used to model nontreelike evolutionary histories. Such networks are often constructed by combining trees, clusters, triplets or characters into a single network that in some welldefined sense simultaneously represents them all. We review these four models and investigate how they are related. Motivated by the parsimony principle, one often aims to construct a network that contains as few reticulations (nontreelike evolutionary events) as possible. In general, the model chosen influences the minimum number of reticulation events required. However, when one obtains the input data from two binary (i.e. fully resolved) trees, we show that the minimum number of reticulations is independent of the model. The number of reticulations necessary to represent the trees, triplets, clusters (in the softwired sense) and characters (with unrestricted multiple crossover recombination) are all equal. Furthermore, we show that these results also hold when not the number of reticulations but the level of the constructed network is minimised. We use these unification results to settle several computational complexity questions that have been open in the field for some time. We also give explicit examples to show that already for data obtained from three binary trees the models begin to diverge. © 2010 Elsevier Ltd."



Lavanya Kannan,
Hua Li and
Arcady Mushegian. A PolynomialTime Algorithm Computing Lower and Upper Bounds of the Rooted Subtree Prune and Regraft Distance. In JCB, Vol. 18(5):743757, 2011. Keywords: bound, minimum number, polynomial, SPR distance. Note: http://dx.doi.org/10.1089/cmb.2010.0045.
Toggle abstract
"Rooted, leaflabeled trees are used in biology to represent hierarchical relationships of various entities, most notably the evolutionary history of molecules and organisms. Rooted Subtree Prune and Regraft (rSPR) operation is a tree rearrangement operation that is used to transform a tree into another tree that has the same set of leaf labels. The minimum number of rSPR operations that transform one tree into another is denoted by drSPR and gives a measure of dissimilarity between the trees, which can be used to compare trees obtained by different approaches, or, in the context of phylogenetic analysis, to detect horizontal gene transfer events by finding incongruences between trees of different evolving characters. The problem of computing the exact d rSPR measure is NPhard, and most algorithms resort to finding sequences of rSPR operations that are sufficient for transforming one tree into another, thereby giving upper bound heuristics for the distance. In this article, we present an O(n4) recursive algorithm DClust that gives both lower bound and upper bound heuristics for the distance between trees with n shared leaves and also gives a sequence of operations that transforms one tree into another. Our experiments on simulated pairs of trees containing up to 100 leaves showed that the two bounds are almost equal for small distances, thereby giving the nearlyprecise actual value, and that the upper bound tends to be close to the upper bounds given by other approaches for all pairs of trees. © Copyright 2011, Mary Ann Liebert, Inc. 2011."



Celine Scornavacca,
Franziska Zickmann and
Daniel H. Huson. Tanglegrams for Rooted Phylogenetic Trees and Networks. In ISMB11, Vol. 27(13):i248i256 of BIO, 2011. Keywords: from network, heuristic, integer linear programming, phylogenetic network, phylogeny, Program Dendroscope, tanglegram, visualization. Note: http://dx.doi.org/10.1093/bioinformatics/btr210.
Toggle abstract
"Motivation: In systematic biology, one is often faced with the task of comparing different phylogenetic trees, in particular in multigene analysis or cospeciation studies. One approach is to use a tanglegram in which two rooted phylogenetic trees are drawn opposite each other, using auxiliary lines to connect matching taxa. There is an increasing interest in using rooted phylogenetic networks to represent evolutionary history, so as to explicitly represent reticulate events, such as horizontal gene transfer, hybridization or reassortment. Thus, the question arises how to define and compute a tanglegram for such networks. Results: In this article, we present the first formal definition of a tanglegram for rooted phylogenetic networks and present a heuristic approach for computing one, called the NNtanglegram method. We compare the performance of our method with existing tree tanglegram algorithms and also show a typical application to real biological datasets. For maximum usability, the algorithm does not require that the trees or networks are bifurcating or bicombining, or that they are on identical taxon sets. © The Author(s) 2011. Published by Oxford University Press."



Changiz Eslahchi and
Reza Hassanzadeh. New Algorithm for Constructing Supernetworks from Partial Trees. In MCCMB11, Pages 106107, 2011. Keywords: abstract network, from unrooted trees, heuristic, phylogenetic network, phylogeny, Program SNSA, reconstruction, simulated annealing, split network. Note: http://mccmb.belozersky.msu.ru/2011/mccmb11.pdf#page=106.



Louxin Zhang,
Yen Kaow Ng,
Taoyang Wu and
Yu Zheng. Network model and efficient method for detecting relative duplications or horizontal gene transfers. In ICCABS11, Pages 214219, 2011. Keywords: dynamic programming, explicit network, from network, from rooted trees, from species tree, phylogenetic network, phylogeny, polynomial, reconstruction.
Toggle abstract
"Background: Horizontal gene transfer and gene duplication are two significant forces behind genome evolution. As more and more wellsupported examples of HGTs are being revealed, there is a growing awareness that HGT is more widespread than previously thought, occurring often not only within bacteria, but also between species remotely related such as bacteria and plants or plants and animals. Although a substantial number of genomic sequences are known, HGT inference remains challenging. Parsimonybased inferences of HGT events are typically NPhard under the framework of gene tree and species tree comparison; it is even more timeconsuming if the maximum likelihood approach is used. The fact that gene tree and species tree incongruence can be further confounded by gene duplication and gene loss events motivates us to incorporate considerations for these events into our inference of HGT events. Similarly, it will be beneficial if known HGT events are considered in the inference of gene duplications and gene losses. © 2011 IEEE."



Leo van Iersel,
Charles Semple and
Mike Steel. Quantifying the Extent of Lateral Gene Transfer Required to Avert a 'Genome of Eden'. In BMB, Vol. 72:1783–1798, 2010. Note: http://www.win.tue.nl/~liersel/LGT.pdf.
Toggle abstract
"The complex pattern of presence and absence of many genes across different species provides tantalising clues as to how genes evolved through the processes of gene genesis, gene loss, and lateral gene transfer (LGT). The extent of LGT, particularly in prokaryotes, and its implications for creating a 'network of life' rather than a 'tree of life' is controversial. In this paper, we formally model the problem of quantifying LGT, and provide exact mathematical bounds, and new computational results. In particular, we investigate the computational complexity of quantifying the extent of LGT under the simple models of gene genesis, loss, and transfer on which a recent heuristic analysis of biological data relied. Our approach takes advantage of a relationship between LGT optimization and graphtheoretical concepts such as tree width and network flow. © 2010 Society for Mathematical Biology."



Tetsuo Asano,
Jesper Jansson,
Kunihiko Sadakane,
Ryuhei Uehara and
Gabriel Valiente. Faster Computation of the RobinsonFoulds Distance between Phylogenetic Networks. In CPM10, Vol. 6129:190201 of LNCS, springer, 2010. Keywords: distance between networks, explicit network, level k phylogenetic network, phylogenetic network, polynomial, spread. Note: http://hdl.handle.net/10119/9859, slides available at http://cs.nyu.edu/parida/CPM2010/MainPage_files/18.pdf.
Toggle abstract
"The RobinsonFoulds distance, which is the most widely used metric for comparing phylogenetic trees, has recently been generalized to phylogenetic networks. Given two networks N1,N2 with n leaves, m nodes, and e edges, the RobinsonFoulds distance measures the number of clusters of descendant leaves that are not shared by N1 and N2. The fastest known algorithm for computing the RobinsonFoulds distance between those networks runs in O(m(m + e)) time. In this paper, we improve the time complexity to O(n(m+ e)/ log n) for general networks and O(nm/log n) for general networks with bounded degree, and to optimal O(m + e) time for planar phylogenetic networks and boundedlevel phylogenetic networks.We also introduce the natural concept of the minimum spread of a phylogenetic network and show how the running time of our new algorithm depends on this parameter. As an example, we prove that the minimum spread of a levelk phylogenetic network is at most k + 1, which implies that for two levelk phylogenetic networks, our algorithm runs in O((k + 1)(m + e)) time. © SpringerVerlag Berlin Heidelberg 2010."



Yufeng Wu. Close Lower and Upper Bounds for the Minimum Reticulate Network of Multiple Phylogenetic Trees. In ISMB10, Vol. 26(12):i140i148 of BIO, 2010. Keywords: explicit network, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, Program PIRN, software. Note: http://dx.doi.org/10.1093/bioinformatics/btq198.
Toggle abstract
"Motivation: Reticulate network is a model for displaying and quantifying the effects of complex reticulate processes on the evolutionary history of species undergoing reticulate evolution. A central computational problem on reticulate networks is: given a set of phylogenetic trees (each for some region of the genomes), reconstruct the most parsimonious reticulate network (called the minimum reticulate network) that combines the topological information contained in the given trees. This problem is wellknown to be NPhard. Thus, existing approaches for this problem either work with only two input trees or make simplifying topological assumptions. Results: We present novel results on the minimum reticulate network problem. Unlike existing approaches, we address the fully general problem: there is no restriction on the number of trees that are input, and there is no restriction on the form of the allowed reticulate network. We present lower and upper bounds on the minimum number of reticulation events in the minimum reticulate network (and infer an approximately parsimonious reticulate network). A program called PIRN implements these methods, which also outputs a graphical representation of the inferred network. Empirical results on simulated and biological data show that our methods are practical for a wide range of data. More importantly, the lower and upper bounds match for many datasets (especially when the number of trees is small or reticulation level is low), and this allows us to solve the minimum reticulate network problem exactly for these datasets. Availability: A software tool, PIRN, is available for download from the web page: http://www.engr.uconn.edu/ywu. Contact: ywu@engr.uconn.edu. Supplementary information: Supplementary data is available at Bioinformatics online. © The Author(s) 2010. Published by Oxford University Press."



Leo van Iersel,
Charles Semple and
Mike Steel. Locating a tree in a phylogenetic network. In IPL, Vol. 110(23), 2010. Keywords: cluster containment, explicit network, from network, level k phylogenetic network, normal network, NP complete, phylogenetic network, polynomial, regular network, time consistent network, tree child network, tree containment, tree sibling network. Note: http://arxiv.org/abs/1006.3122.
Toggle abstract
"Phylogenetic trees and networks are leaflabelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NPcomplete in general. In this article, we consider the restriction of these problems to several wellstudied classes of phylogenetic networks. We show that Tree Containment is polynomialtime solvable for normal networks, for binary treechild networks, and for levelk networks. On the other hand, we show that, even for treesibling, timeconsistent, regular networks, both Tree Containment and Cluster Containment remain NPcomplete. © 2010 Elsevier B.V. All rights reserved."



Leo van Iersel,
Steven Kelk and
Matthias Mnich. Uniqueness, intractability and exact algorithms: reflections on levelk phylogenetic networks. In JBCB, Vol. 7(4):597623, 2009. Keywords: explicit network, from triplets, galled tree, level k phylogenetic network, NP complete, phylogenetic network, phylogeny, reconstruction, uniqueness. Note: http://arxiv.org/pdf/0712.2932v2.



Leo van Iersel. Algorithms, Haplotypes and Phylogenetic Networks. PhD thesis, Eindhoven University of Technology, The Netherlands, 2009. Keywords: evaluation, explicit network, exponential algorithm, FPT, from triplets, galled tree, level k phylogenetic network, mu distance, phylogenetic network, phylogeny, polynomial, Program Level2, Program Marlon, Program Simplistic, Program T REX, reconstruction. Note: http://www.win.tue.nl/~liersel/thesis_vaniersel_viewing.pdf.



ThuHien To and
Michel Habib. Levelk Phylogenetic Networks Are Constructable from a Dense Triplet Set in Polynomial Time. In CPM09, (5577):275288, springer, 2009. Keywords: explicit network, from triplets, level k phylogenetic network, minimum number, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://arxiv.org/abs/0901.1657.
Toggle abstract
"For a given dense triplet set Τ there exist two natural questions [7]: Does there exist any phylogenetic network consistent with Τ? In case such networks exist, can we find an effective algorithm to construct one? For cases of networks of levels k = 0, 1 or 2, these questions were answered in [1,6,7,8,10] with effective polynomial algorithms. For higher levels k, partial answers were recently obtained in [11] with an O(/Τ/k+1)time algorithm for simple networks. In this paper, we give a complete answer to the general case, solving a problem proposed in [7]. The main idea of our proof is to use a special property of SNsets in a levelk network. As a consequence, for any fixed k, we can also find a levelk network with the minimum number of reticulations, if one exists, in polynomial time. © 2009 Springer Berlin Heidelberg."



Philippe Gambette,
Vincent Berry and
Christophe Paul. The structure of levelk phylogenetic networks. In CPM09, Vol. 5577:289300 of LNCS, springer, 2009. Keywords: coalescent, explicit network, galled tree, level k phylogenetic network, phylogenetic network, Program Recodon. Note: http://hallirmm.ccsd.cnrs.fr/lirmm00371485/en/.
Toggle abstract
"Evolution is usually described as a phylogenetic tree, but due to some exchange of genetic material, it can be represented as a phylogenetic network which has an underlying tree structure. The notion of level was recently introduced as a parameter on realistic kinds of phylogenetic networks to express their complexity and treelikeness. We study the structure of levelk networks, and how they can be decomposed into levelk generators. We also provide a polynomial time algorithm which takes as input the set of levelk generators and builds the set of level(k + 1) generators. Finally, with a simulation study, we evaluate the proportion of levelk phylogenetic networks among networks generated according to the coalescent model with recombination. © 2009 Springer Berlin Heidelberg."









Bui Quang Minh,
Fabio Pardi,
Steffen Klaere and
Arndt von Haeseler. Budgeted Phylogenetic Diversity on Circular Split Systems. In TCBB, Vol. 6(1):2229, 2009. Keywords: abstract network, circular split system, dynamic programming, from network, phylogenetic network, polynomial, split, split network. Note: http://dx.doi.org/10.1109/TCBB.2008.54.
Toggle abstract
"In the last 15 years, Phylogenetic Diversity (PD) has gained interest in the community of conservation biologists as a surrogate measure for assessing biodiversity. We have recently proposed two approaches to select taxa for maximizing PD, namely PD with budget constraints and PD on split systems. In this paper, we will unify these two strategies and present a dynamic programming algorithm to solve the unified framework of selecting taxa with maximal PD under budget constraints on circular split systems. An improved algorithm will also be given if the underlying split system is a tree. © 2006 IEEE."





Chris Whidden. A Unifying View on Approximation and FPT of Agreement Forests. Master's thesis, Dalhousie University, Canada, 2009. Keywords: agreement forest, approximation, explicit network, FPT, from rooted trees, hybridization, phylogenetic network, phylogeny, reconstruction, SPR distance. Note: http://web.cs.dal.ca/~whidden/MCSThesis09.pdf.



Chris Whidden and
Norbert Zeh. A Unifying View on Approximation and FPT of Agreement Forests. In WABI09, Vol. 5724:390402 of LNCS, Springer, 2009. Keywords: agreement forest, approximation, explicit network, FPT, minimum number, phylogenetic network, phylogeny, reconstruction. Note: https://www.cs.dal.ca/sites/default/files/technical_reports/CS200902.pdf.
Toggle abstract
"We provide a unifying view on the structure of maximum (acyclic) agreement forests of rooted and unrooted phylogenies. This enables us to obtain linear or O(n log n)time 3approximation and improved fixedparameter algorithms for the subtree prune and regraft distance between two rooted phylogenies, the tree bisection and reconnection distance between two unrooted phylogenies, and the hybridization number of two rooted phylogenies. © 2009 Springer Berlin Heidelberg."



Rune Lyngsø,
Yun S. Song and
Jotun Hein. Accurate Computation of Likelihoods in the Coalescent with Recombination via Parsimony. In RECOMB08, Vol. 4955:463477 of LNCS, springer, 2008. Keywords: coalescent, likelihood, phylogenetic network, phylogeny, recombination, statistical model. Note: http://dx.doi.org/10.1007/9783540788393_41.
Toggle abstract
"Understanding the variation of recombination rates across a given genome is crucial for disease gene mapping and for detecting signatures of selection, to name just a couple of applications. A widelyused method of estimating recombination rates is the maximum likelihood approach, and the problem of accurately computing likelihoods in the coalescent with recombination has received much attention in the past. A variety of sampling and approximation methods have been proposed, but no single method seems to perform consistently better than the rest, and there still is great value in developing better statistical methods for accurately computing likelihoods. So far, with the exception of some twolocus models, it has remained unknown how the true likelihood exactly behaves as a function of model parameters, or how close estimated likelihoods are to the true likelihood. In this paper, we develop a deterministic, parsimonybased method of accurately computing the likelihood for multilocus input data of moderate size. We first find the set of all ancestral configurations (ACs) that occur in evolutionary histories with at most k crossover recombinations. Then, we compute the likelihood by summing over all evolutionary histories that can be constructed only using the ACs in that set. We allow for an arbitrary number of crossing over, coalescent and mutation events in a history, as long as the transitions stay within that restricted set of ACs. For given parameter values, by gradually increasing the bound k until the likelihood stabilizes, we can obtain an accurate estimate of the likelihood. At least for moderate crossover rates, the algorithmbased method described here opens up a new window of opportunities for testing and finetuning statistical methods for computing likelihoods. © 2008 SpringerVerlag Berlin Heidelberg."



Simone Linz. Reticulation in evolution. PhD thesis, HeinrichHeineUniversity, Düsseldorf, Germany, 2008. Keywords: agreement forest, FPT, from rooted trees, lateral gene transfer, phylogenetic network, phylogeny, SPR distance, statistical model. Note: http://docserv.uniduesseldorf.de/servlets/DocumentServlet?id=8505.



Daniel H. Huson and
Regula Rupp. Summarizing Multiple Gene Trees Using Cluster Networks. In WABI08, Vol. 5251:296305 of LNCS, springer, 2008. Keywords: abstract network, from clusters, from rooted trees, phylogenetic network, phylogeny, polynomial, Program Dendroscope. Note: http://dx.doi.org/10.1007/9783540873617_25, slides from the MIEP Conference available at http://www.lirmm.fr/MIEP08/slides/11_13_rupp.pdf.
Toggle abstract
"The result of a multiple gene tree analysis is usually a number of different tree topologies that are each supported by a significant proportion of the genes. We introduce the concept of a cluster network that can be used to combine such trees into a single rooted network, which can be drawn either as a cladogram or phylogram. In contrast to split networks, which can grow exponentially in the size of the input, cluster networks grow only quadratically. A cluster network is easily computed using a modification of the treepopping algorithm, which we call networkpopping. The approach has been implemented as part of the Dendroscope treedrawing program and its application is illustrated using data and results from three recent studies on large numbers of gene trees. © 2008 SpringerVerlag Berlin Heidelberg."



Lichen Bao and
Sergey Bereg. Clustered SplitsNetworks. In COCOA08, Vol. 5165:469478 of LNCS, springer, 2008. Keywords: abstract network, from distances, NeighborNet, realization, reconstruction. Note: http://dx.doi.org/10.1007/9783540850977_44, slides available at http://www.utdallas.edu/~besp/cocoa08talk.pdf.
Toggle abstract
"We address the problem of constructing phylogenetic networks using two criteria: the number of cycles and the fit value of the network. Traditionally the fit value is the main objective for evaluating phylogenetic networks. However, a small number of cycles in a network is desired and pointed out in several publications. We propose a new phylogenetic network called CSnetwork and a method for constructing it. The method is based on the wellknown splitstree method. A CSnetwork contains a face which is kcycle, k ≥ 3 (not as splitstree). We discuss difficulties of using nonparallelogram faces in splitstree networks. Our method involves clustering and optimization of weights of the network edges. The algorithm for constructing the underlying graph (except the optimization step) has a polynomial time. Experimental results show a good performance of our algorithm. © SpringerVerlag Berlin Heidelberg 2008."



Sagi Snir and
Tamir Tuller. Novel Phylogenetic Network Inference by Combining Maximum Likelihood and Hidden Markov Models. In WABI08, Vol. 5251:354368 of LNCS, springer, 2008. Keywords: explicit network, from sequences, HMM, lateral gene transfer, likelihood, phylogenetic network, phylogeny, statistical model. Note: http://dx.doi.org/10.1007/9783540873617_30.
Toggle abstract
"Horizontal Gene Transfer (HGT) is the event of transferring genetic material from one lineage in the evolutionary tree to a different lineage. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Although the prevailing assumption is of complete HGT, cases of partial HGT (which are also named chimeric HGT) where only part of a gene is horizontally transferred, have also been reported, albeit less frequently. In this work we suggest a new probabilistic model for analyzing and modeling phylogenetic networks, the NETHMM. This new model captures the biologically realistic assumption that neighboring sites of DNA or amino acid sequences are not independent, which increases the accuracy of the inference. The model describes the phylogenetic network as a Hidden Markov Model (HMM), where each hidden state is related to one of the network's trees. One of the advantages of the NETHMM is its ability to infer partial HGT as well as complete HGT. We describe the properties of the NETHMM, devise efficient algorithms for solving a set of problems related to it, and implement them in software. We also provide a novel complementary significance test for evaluating the fitness of a model (NETHMM) to a given data set. Using NETHMM we are able to answer interesting biological questions, such as inferring the length of partial HGT's and the affected nucleotides in the genomic sequences, as well as inferring the exact location of HGT events along the tree branches. These advantages are demonstrated through the analysis of synthetical inputs and two different biological inputs. © 2008 SpringerVerlag Berlin Heidelberg."



Stefan Grünewald,
Andreas Spillner,
Kristoffer Forslund and
Vincent Moulton. Constructing Phylogenetic Supernetworks from Quartets. In WABI08, Vol. 5251:284295 of LNCS, springer, 2008. Keywords: abstract network, from quartets, from unrooted trees, phylogenetic network, phylogeny, Program QNet, Program SplitsTree, reconstruction, split network. Note: http://dx.doi.org/10.1007/9783540873617_24.
Toggle abstract
"In phylogenetics it is common practice to summarize collections of partial phylogenetic trees in the form of supertrees. Recently it has been proposed to construct phylogenetic supernetworks as an alternative to supertrees as these allow the representation of conflicting information in the trees, information that may not be representable in a single tree. Here we introduce SuperQ, a new method for constructing such supernetworks. It works by breaking the input trees into quartet trees, and stitching together the resulting set to form a network. The stitching process is performed using an adaptation of the QNet method for phylogenetic network reconstruction. In addition to presenting the new method, we illustrate the applicability of SuperQ to three data sets and discuss future directions for testing and development. © 2008 SpringerVerlag Berlin Heidelberg."



Gabriel Cardona,
Mercè Llabrés,
Francesc Rosselló and
Gabriel Valiente. Phylogenetic Networks: Justification, Models, Distances and Algorithms. In VI Jornadas de Matemática Discreta y Algorítmica (JMDA'08), 2008. Keywords: distance between networks, mu distance, phylogenetic network, phylogeny, polynomial, survey, time consistent network, tree child network, tripartition distance, triplet distance. Note: http://bioinfo.uib.es/media/uploaded/jmda2008_submission_611.pdf.



Magnus Bordewich and
Charles Semple. Computing the minimum number of hybridization events for a consistent evolutionary history. In DAM, Vol. 155:914918, 2007. Keywords: agreement forest, approximation, APX hard, explicit network, from rooted trees, hybridization, inapproximability, NP complete, phylogenetic network, phylogeny, SPR distance. Note: http://www.math.canterbury.ac.nz/~c.semple/papers/BS06a.pdf.



Olivier Gauthier and
FrançoisJoseph Lapointe. Hybrids and Phylogenetics Revisited: A Statistical Test of Hybridization Using Quartets. In Systematic Botany, Vol. 32(1):815, 2007. Keywords: explicit network, from quartets, hybridization, phylogenetic network, phylogeny, reconstruction, reticulogram, split decomposition. Note: http://dx.doi.org/10.1600/036364407780360238.
Toggle abstract
"The occurrence of reticulations in the evolutionary history of species poses serious challenges for all modern practitioners of phylogenetic analysis. Such events, including hybridization, introgression, and lateral gene transfer, lead to evolutionary histories that cannot be adequately represented in the form of phylogenetic trees. Although numerous methods that allow for the reconstruction of phylogenetic networks have been proposed in recent years, the detection of reticulations still remains problematic. In this paper we present a Hybrid Detection Criterion (HDC) along with a statistical procedure that allows for the identification of hybrid taxa. The test assesses whether a putative hybrid is consistently intermediate between its postulated parents, with respect to the other taxa. The performance of the statistical method is evaluated using known hybrids of the genus Aphelandra (Acanthaceae) using two network methods: reticulograms and split decomposition graphs. Our results indicate that the HDC test is reliable when used jointly with split decomposition. On the other hand, the test lacks power and provides misleading results when using reticulograms. We then show how the procedure can be used as a tool to identify putative hybrids. © Copyright 2007 by the American Society of Plant Taxonomists."





Dan Gusfield,
Dean Hickerson and
Satish Eddhu. An efficiently computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study. In DAM, Vol. 155(67):806830, 2007. Note: http://wwwcsif.cs.ucdavis.edu/~gusfield/cclowerbound.pdf.
Toggle abstract
"Phylogenetic networks are models of sequence evolution that go beyond trees, allowing biological operations that are not treelike. One of the most important biological operations is recombination between two sequences. An established problem [J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Math. Biosci. 98 (1990) 185200; J. Hein, A heuristic method to reconstruct the history of sequences subject to recombination, J. Molecular Evoluation 36 (1993) 396405; Y. Song, J. Hein, Parsimonious reconstruction of sequence evolution and haplotype blocks: finding the minimum number of recombination events, in: Proceedings of 2003 Workshop on Algorithms in Bioinformatics, Berlin, Germany, 2003, Lecture Notes in Computer Science, Springer, Berlin; Y. Song, J. Hein, On the minimum number of recombination events in the evolutionary history of DNA sequences, J. Math. Biol. 48 (2003) 160186; L. Wang, K. Zhang, L. Zhang, Perfect phylogenetic networks with recombination, J. Comput. Biol. 8 (2001) 6978; S.R. Myers, R.C. Griffiths, Bounds on the minimum number of recombination events in a sample history, Genetics 163 (2003) 375394; V. Bafna, V. Bansal, Improved recombination lower bounds for haplotype data, in: Proceedings of RECOMB, 2005; Y. Song, Y. Wu, D. Gusfield, Efficient computation of close lower and upper bounds on the minimum number of needed recombinations in the evolution of biological sequences, Bioinformatics 21 (2005) i413i422. Bioinformatics (Suppl. 1), Proceedings of ISMB, 2005, D. Gusfield, S. Eddhu, C. Langley, Optimal, efficient reconstruction of phylogenetic networks with constrained recombination, J. Bioinform. Comput. Biol. 2(1) (2004) 173213; D. Gusfield, Optimal, efficient reconstruction of rootunknown phylogenetic networks with constrained and structured recombination, J. Comput. Systems Sci. 70 (2005) 381398] is to find a phylogenetic network that derives an input set of sequences, minimizing the number of recombinations used. No efficient, general algorithm is known for this problem. Several papers consider the problem of computing a lower bound on the number of recombinations needed. In this paper we establish a new, efficiently computed lower bound. This result is useful in methods to estimate the number of needed recombinations, and also to prove the optimality of algorithms for constructing phylogenetic networks under certain conditions [D. Gusfield, S. Eddhu, C. Langley, Optimal, efficient reconstruction of phylogenetic networks with constrained recombination, J. Bioinform. Comput. Biol. 2(1) (2004) 173213; D. Gusfield, Optimal, efficient reconstruction of rootunknown phylogenetic networks with constrained and structured recombination, J. Comput. Systems Sci. 70 (2005) 381398; D. Gusfield, Optimal, efficient reconstruction of rootunknown phylogenetic networks with constrained recombination, Technical Report, Department of Computer Science, University of California, Davis, CA, 2004]. The lower bound is based on a structural, combinatorial insight, using only the site conflicts and incompatibilities, and hence it is fundamental and applicable to many biological phenomena other than recombination, for example, when gene conversions or recurrent or back mutations or crossspecies hybridizations cause the phylogenetic history to deviate from a tree structure. In addition to establishing the bound, we examine its use in more complex lower bound methods, and compare the bounds obtained to those obtained by other established lower bound methods. © 2006 Elsevier B.V. All rights reserved."



Daniel H. Huson and
Tobias Kloepper. Beyond Galled Trees  Decomposition and Computation of Galled Networks. In RECOMB07, Vol. 4453:211225 of LNCS, springer, 2007. Keywords: FPT, from splits, from trees, galled network, phylogenetic network, phylogeny, Program SplitsTree, reconstruction. Note: http://dx.doi.org/10.1007/9783540716815_15, errata..





Guohua Jin,
Luay Nakhleh,
Sagi Snir and
Tamir Tuller. A New Lineartime Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance. In ISBRA07, Vol. 4463:6172 of LNCS, springer, 2007. Keywords: approximation, heuristic, parsimony, phylogenetic network, phylogeny, Program Nepal. Note: http://www.cs.rice.edu/~nakhleh/Papers/isbra07.pdf.









Maria S. Poptsova and
J. Peter Gogarten. The power of phylogenetic approaches to detect horizontally transferred genes. In BMCEB, Vol. 7(45), 2007. Keywords: evaluation, from rooted trees, lateral gene transfer, Program EEEP. Note: http://dx.doi.org/10.1186/14712148745.
Toggle abstract
"Background. Horizontal gene transfer plays an important role in evolution because it sometimes allows recipient lineages to adapt to new ecological niches. High genes transfer frequencies were inferred for prokaryotic and early eukaryotic evolution. Does horizontal gene transfer also impact phylogenetic reconstruction of the evolutionary history of genomes and organisms? The answer to this question depends at least in part on the actual gene transfer frequencies and on the ability to weed out transferred genes from further analyses. Are the detected transfers mainly false positives, or are they the tip of an iceberg of many transfer events most of which go undetected by current methods? Results. Phylogenetic detection methods appear to be the method of choice to infer gene transfers, especially for ancient transfers and those followed by orthologous replacement. Here we explore how well some of these methods perform using in silico transfers between the terminal branches of a gamma proteobacterial, genome based phylogeny. For the experiments performed here on average the AU test at a 5% significance level detects 90.3% of the transfers and 91% of the exchanges as significant. Using the RobinsonFoulds distance only 57.7% of the exchanges and 60% of the donations were identified as significant. Analyses using bipartition spectra appeared most successful in our test case. The power of detection was on average 97% using a 70% cutoff and 94.2% with 90% cutoff for identifying conflicting bipartitions, while the rate of false positives was below 4.2% and 2.1% for the two cutoffs, respectively. For all methods the detection rates improved when more intervening branches separated donor and recipient. Conclusion. Rates of detected transfers should not be mistaken for the actual transfer rates; most analyses of gene transfers remain anecdotal. The method and significance level to identify potential gene transfer events represent a tradeoff between the frequency of erroneous identification (false positives) and the power to detect actual transfer events. © 2007 Poptsova and Gogarten; licensee BioMed Central Ltd."





Hadas Birin,
Zohar GalOr,
Isaac Elias and
Tamir Tuller. Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion. In WABI07, Vol. 4645:111123 of LNCS, springer, 2007. Keywords: explicit network, from sequences, phylogenetic network, phylogeny, reconstruction. Note: http://safrabio.cs.tau.ac.il/download/Papers/Birin_et_al.pdf.





Jesper Jansson and
WingKin Sung. Inferring a level1 phylogenetic network from a dense set of rooted triplets. In TCS, Vol. 363(1):6068, 2006. 1 comment Keywords: explicit network, from triplets, galled tree, level k phylogenetic network, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.df.lth.se/~jj/Publications/ipnrt8_TCS2006.pdf.
Toggle abstract
"We consider the following problem: Given a set T of rooted triplets with leaf set L, determine whether there exists a phylogenetic network consistent with T, and if so, construct one. We show that if no restrictions are placed on the hybrid nodes in the solution, the problem is trivially solved in polynomial time by a simple sorting networkbased construction. For the more interesting (and biologically more motivated) case where the solution is required to be a level1 phylogenetic network, we present an algorithm solving the problem in O ( T 2) time when T is dense, i.e., when T contains at least one rooted triplet for each cardinality three subset of L. We also give an O ( T 5 / 3)time algorithm for finding the set of all phylogenetic networks having a single hybrid node attached to exactly one leaf (and having no other hybrid nodes) that are consistent with a given dense set of rooted triplets. © 2006 Elsevier B.V. All rights reserved."



Jesper Jansson,
Nguyen Bao Nguyen and
WingKin Sung. Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. In SICOMP, Vol. 35(5):10981121, 2006. 1 comment Keywords: approximation, explicit network, from triplets, galled tree, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.df.lth.se/~jj/Publications/triplets_to_gn7_SICOMP2006.pdf.
Toggle abstract
"This paper considers the problem of determining whether a given set Τ of rooted triplets can be merged without conflicts into a galled phylogenetic network and, if so, constructing such a network. When the input Τ is dense, we solve the problem in O(Τ) time, which is optimal since the size of the input is Θ(Τ). In comparison, the previously fastest algorithm for this problem runs in O(Τ2) time. We also develop an optimal O(Τ)time algorithm for enumerating all simple phylogenetic networks leaflabeled by L that are consistent with Τ, where L is the set of leaf labels in Τ, which is used by our main algorithm. Next, we prove that the problem becomes NPhard if extended to nondense inputs, even for the special case of simple phylogenetic networks. We also show that for every positive integer n, there exists some set Τ of rooted triplets on n leaves such that any galled network can be consistent with at most 0.4883 ·Τ of the rooted triplets in Τ. On the other hand, we provide a polynomialtime approximation algorithm that always outputs a galled network consistent with at least a factor of 5/12 (> 0.4166) of the rooted triplets in Τ. © 2006 Society for Industrial and Applied Mathematics."



Robert G. Beiko and
Nicholas Hamilton. Phylogenetic identification of lateral genetic transfer events. In BMCEB, Vol. 6(15), 2006. Keywords: evaluation, from rooted trees, from unrooted trees, lateral gene transfer, Program EEEP, Program HorizStory, Program LatTrans, reconstruction, software, SPR distance. Note: http://dx.doi.org/10.1186/14712148615.
Toggle abstract
"Background: Lateral genetic transfer can lead to disagreements among phylogenetic trees comprising sequences from the same set of taxa. Where topological discordance is thought to have arisen through genetic transfer events, tree comparisons can be used to identify the lineages that may have shared genetic information. An 'edit path' of one or more transfer events can be represented with a series of subtree prune and regraft (SPR) operations, but finding the optimal such set of operations is NPhard for comparisons between rooted trees, and may be so for unrooted trees as well. Results: Efficient Evaluation of Edit Paths (EEEP) is a new tree comparison algorithm that uses evolutionarily reasonable constraints to identify and eliminate many unproductive search avenues, reducing the time required to solve many edit path problems. The performance of EEEP compares favourably to that of other algorithms when applied to strictly bifurcating trees with specified numbers of SPR operations. We also used EEEP to recover edit paths from over 19 000 unrooted, incompletely resolved protein trees containing up to 144 taxa as part of a large phylogenomic study. While inferred protein trees were far more similar to a reference supertree than random trees were to each other, the phylogenetic distance spanned by random versus inferred transfer events was similar, suggesting that real transfer events occur most frequently between closely related organisms, but can span large phylogenetic distances as well. While most of the protein trees examined here were very similar to the reference supertree, requiring zero or one edit operations for reconciliation, some trees implied up to 40 transfer events within a single orthologous set of proteins. Conclusion: Since sequence trees typically have no implied root and may contain unresolved or multifurcating nodes, the strategy implemented in EEEP is the most appropriate for phylogenomic analyses. The high degree of consistency among inferred protein trees shows that vertical inheritance is the dominant pattern of evolution, at least for the set of organisms considered here. However, the edit paths inferred using EEEP suggest an important role for genetic transfer in the evolution of microbial genomes as well. © 2006Beiko and Hamilton; licensee BioMed Central Ltd."









Mihaela Baroni,
Stefan Grünewald,
Vincent Moulton and
Charles Semple. Bounding the number of hybridization events for a consistent evolutionary history. In JOMB, Vol. 51(2):171182, 2005. Keywords: agreement forest, bound, explicit network, from rooted trees, hybridization, minimum number, phylogenetic network, phylogeny, reconstruction, SPR distance. Note: http://www.math.canterbury.ac.nz/~c.semple/papers/BGMS05.pdf.
Toggle abstract
"Evolutionary processes such as hybridisation, lateral gene transfer, and recombination are all key factors in shaping the structure of genes and genomes. However, since such processes are not always best represented by trees, there is now considerable interest in using more general networks instead. For example, in recent studies it has been shown that networks can be used to provide lower bounds on the number of recombination events and also for the number of lateral gene transfers that took place in the evolutionary history of a set of molecular sequences. In this paper we describe the theoretical performance of some related bounds that result when merging pairs of trees into networks. © SpringerVerlag 2005."



Magnus Bordewich and
Charles Semple. On the computational complexity of the rooted subtree prune and regraft distance. In ACOM, Vol. 8:409423, 2005. Keywords: agreement forest, from rooted trees, NP complete, SPR distance. Note: http://www.math.canterbury.ac.nz/~c.semple/papers/BS04.pdf.
Toggle abstract
"The graphtheoretic operation of rooted subtree prune and regraft is increasingly being used as a tool for understanding and modelling reticulation events in evolutionary biology. In this paper, we show that computing the rooted subtree prune and regraft distance between two rooted binary phylogenetic trees on the same label set is NPhard. This resolves a longstanding open problem. Furthermore, we show that this distance is fixed parameter tractable when parameterised by the distance between the two trees."



Charles Choy,
Jesper Jansson,
Kunihiko Sadakane and
WingKin Sung. Computing the maximum agreement of phylogenetic networks. In TCS, Vol. 335(1):93107, 2005. Keywords: dynamic programming, FPT, level k phylogenetic network, MASN, NP complete, phylogenetic network, phylogeny. Note: http://www.df.lth.se/~jj/Publications/masn8_TCS2005.pdf.
Toggle abstract
"We introduce the maximum agreement phylogenetic subnetwork problem (MASN) for finding branching structure shared by a set of phylogenetic networks. We prove that the problem is NPhard even if restricted to three phylogenetic networks and give an O(n2)time algorithm for the special case of two level1 phylogenetic networks, where n is the number of leaves in the input networks and where N is called a levelf phylogenetic network if every biconnected component in the underlying undirected graph induces a subgraph of N containing at most f nodes with indegree 2. We also show how to extend our technique to yield a polynomialtime algorithm for any two levelf phylogenetic networks N1,N2 satisfying f=O(logn); more precisely, its running time is O(V(N1)·V(N2)·2f1+f2), where V(Ni) and fi denote the set of nodes in Ni and the level of Ni, respectively, for i∈{1,2}. © 2005 Elsevier B.V. All rights reserved."





Barbara R. Holland,
Frédéric Delsuc and
Vincent Moulton. Visualizing Conflicting Evolutionary Hypotheses in Large Collections of Trees: Using Consensus Networks to Study the Origins of Placentals and Hexapods. In Systematic Biology, Vol. 54(1):6676, 2005. Keywords: consensus. Note: http://halsde.archivesouvertes.fr/halsde00193050/fr/.
Toggle abstract
"Many phylogenetic methods produce large collections of trees as opposed to a single tree, which allows the exploration of support for various evolutionary hypotheses. However, to be useful, the information contained in large collections of trees should be summarized; frequently this is achieved by constructing a consensus tree. Consensus trees display only those signals that are present in a large proportion of the trees. However, by their very nature consensus trees require that any conflicts between the trees are necessarily disregarded. We present a method that extends the notion of consensus trees to allow the visualization of conflicting hypotheses in a consensus network. We demonstrate the utility of this method in highlighting differences amongst maximum likelihood bootstrap values and Bayesian posterior probabilities in the placental mammal phylogeny, and also in comparing the phylogenetic signal contained in amino acid versus nucleotide characters for hexapod monophyly. Copyright © Society of Systematic Biologists."







Victor Kunin,
Leon Goldovsky,
Nikos Darzentas and
Christos A. Ouzounis. The net of life: Reconstructing the microbial phylogenetic network. In GR, Vol. 15:954959, 2005. Note: http://dx.doi.org/10.1101/gr.3666505.
Toggle abstract
"It has previously been suggested that the phylogeny of microbial species might be better described as a network containing vertical and horizontal gene transfer (HGT) events. Yet, all phylogenetic reconstructions so far have presented microbial trees rather than networks. Here, we present a first attempt to reconstruct such an evolutionary network, which we term the "net of life." We use available tree reconstruction methods to infer vertical inheritance, and use an ancestral state inference algorithm to map HGT events on the tree. We also describe a weighting scheme used to estimate the number of genes exchanged between pairs of organisms. We demonstrate that vertical inheritance constitutes the bulk of gene transfer on the tree of life. We term the bulk of horizontal gene flow between tree nodes as "vines," and demonstrate that multiple but mostly tiny vines interconnect the tree. Our results strongly suggest that the HGT network is a scalefree graph, a finding with important implications for genome evolution. We propose that genes might propagate extremely rapidly across microbial species through the HGT network, using certain organisms as hubs. ©2005 by Cold Spring Harbor Laboratory Press."



Martyn Kennedy,
Barbara R. Holland,
Russel D. Gray and
Hamish G. Spencer. Untangling Long Branches: Identifying Conflicting Phylogenetic Signals Using Spectral Analysis, NeighborNet, and Consensus Networks. In Systematic Biology, Vol. 54(4):620633, 2005. Keywords: abstract network, consensus, NeighborNet, phylogenetic network, phylogeny. Note: http://awcmee.massey.ac.nz/people/bholland/pdf/Kennedy_etal_2005.pdf.



David A. Morrison. Networks in phylogenetic analysis: new tools for population biology. In IJP, Vol. 35:567582, 2005. Keywords: median network, NeighborNet, phylogenetic network, phylogeny, population genetics, Program Network, Program Spectronet, Program SplitsTree, Program T REX, Program TCS, reconstruction, reticulogram, split decomposition, survey. Note: http://hem.fyristorg.com/acacia/papers/networks.pdf.





Luay Nakhleh,
Tandy Warnow,
C. Randal Linder and
Katherine St. John. Reconstructing reticulate evolution in species  theory and practice. In JCB, Vol. 12(6):796811, 2005. Keywords: from rooted trees, galled tree, phylogenetic network, phylogeny, polynomial, Program SPNet, reconstruction, software. Note: http://www.cs.rice.edu/~nakhleh/Papers/NWLSjcb.pdf.



Richard C. Winkworth,
David Bryant,
Peter J. Lockhart,
David Havell and
Vincent Moulton. Biogeographic Interpretation of Splits Graphs: Least Squares Optimization of Branch Lengths. In Systematic Biology, Vol. 54(1):5665, 2005. Keywords: abstract network, from distances, from network, phylogenetic network, phylogeny, reconstruction, split, split network. Note: http://www.math.auckland.ac.nz/~bryant/Papers/05Biogeographic.pdf.



Dave MacLeod,
Robert L. Charlebois,
W. Ford Doolittle and
Eric Bapteste. Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. In BMCEB, Vol. 5(27), 2005. Keywords: explicit network, from rooted trees, lateral gene transfer, phylogenetic network, phylogeny, Program HorizStory, reconstruction, software. Note: http://dx.doi.org/10.1186/14712148527.
Toggle abstract
"Background: When organismal phylogenies based on sequences of single marker genes are poorly resolved, a logical approach is to add more markers, on the assumption that weak but congruent phylogenetic signal will be reinforced in such multigene trees. Such approaches are valid only when the several markers indeed have identical phylogenies, an issue which many multigene methods (such as the use of concatenated gene sequences or the assembly of supertrees) do not directly address. Indeed, even when the true history is a mixture of vertical descent for some genes and lateral gene transfer (LGT) for others, such methods produce unique topologies. Results: We have developed software that aims to extract evidence for vertical and lateral inheritance from a set of gene trees compared against an arbitrary reference tree. This evidence is then displayed as a synthesis showing support over the tree for vertical inheritance, overlaid with explicit lateral gene transfer (LGT) events inferred to have occurred over the history of the tree. Like splitstree methods, one can thus identify nodes at which conflict occurs. Additionally one can make reasonable inferences about vertical and lateral signal, assigning putative donors and recipients. Conclusion: A tool such as ours can serve to explore the reticulated dimensionality of molecular evolution, by dissecting vertical and lateral inheritance at high resolution. By this, we mean that individual nodes can be examined not only for congruence, but also for coherence in light of LGT. We assert that our tools will facilitate the comparison of phylogenetic trees, and the interpretation of conflicting data. © 2005 MacLeod et al; licensee BioMed Central Ltd."



Insa Cassens,
Patrick Mardulyn and
Michel C. Milinkovitch. Evaluating Intraspecific Network Construction Methods Using Simulated Sequence Data: Do Existing Algorithms Outperform the Global Maximum Parsimony Approach? In Systematic Biology, Vol. 54(3):363372, 2005. Keywords: abstract network, evaluation, from unrooted trees, haplotype network, parsimony, phylogenetic network, phylogeny, Program Arlequin, Program CombineTrees, Program Network, Program TCS, reconstruction, software. Note: http://www.lanevol.org/LANE/publications_files/Cassens_etal_SystBio_2005.pdf.



David Bryant. Extending tree models to splits networks. In
Lior Pachter and
Bernd Sturmfels editors, Algebraic Statistics for Computational Biology, Pages 322334, Cambridge University Press, 2005. Keywords: abstract network, from splits, likelihood, phylogenetic network, phylogeny, split, split network, statistical model. Note: http://www.math.auckland.ac.nz/~bryant/Papers/05ascbChapter.pdf.





Derek Ruths. Applications of phylogenetic incongruence to detecting and reconstructing interspecific recombination and horizontal gene transfer. Master's thesis, Rice University, U.S.A., 2005. Keywords: explicit network, from rooted trees, from species tree, heuristic, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://hdl.handle.net/1911/17912.



Mihaela Baroni,
Charles Semple and
Mike Steel. A framework for representing reticulate evolution. In ACOM, Vol. 8:398401, 2004. Keywords: explicit network, from clusters, hybridization, minimum number, phylogenetic network, phylogeny, reconstruction, regular network, SPR distance. Note: http://www.math.canterbury.ac.nz/~c.semple/papers/BSS04.pdf.
Toggle abstract
"Acyclic directed graphs (ADGs) are increasingly being viewed as more appropriate for representing certain evolutionary relationships, particularly in biology, than rooted trees. In this paper, we develop a framework for the analysis of these graphs which we call hybrid phylogenies. We are particularly interested in the problem whereby one is given a set of phylogenetic trees and wishes to determine a hybrid phylogeny that 'embeds' each of these trees and which requires the smallest number of hybridisation events. We show that this quantity can be greatly reduced if additional species are involved, and investigate other combinatorial aspects of this and related questions."



Charles Choy,
Jesper Jansson,
Kunihiko Sadakane and
WingKin Sung. Computing the maximum agreement of phylogenetic networks. In Proceedings of Computing: the Tenth Australasian Theory Symposium (CATS'04), Vol. 91:134147 of Electronic Notes in Theoretical Computer Science, 2004. Keywords: dynamic programming, FPT, level k phylogenetic network, MASN, NP complete, phylogenetic network, phylogeny. Note: http://www.df.lth.se/~jj/Publications/masn6_CATS2004.pdf.
Toggle abstract
"We introduce the maximum agreement phylogenetic subnetwork problem (MASN) of finding a branching structure shared by a set of phylogenetic networks. We prove that the problem is NPhard even if restricted to three phylogenetic networks and give an O(n2)time algorithm for the special case of two level1 phylogenetic networks, where n is the number of leaves in the input networks and where N is called a levelf phylogenetic network if every biconnected component in the underlying undirected graph contains at most f nodes having indegree 2 in N. Our algorithm can be extended to yield a polynomialtime algorithm for two levelf phylogenetic networks N 1,N2 for any f which is upperbounded by a constant; more precisely, its running time is O(V(N1)·V(N 2)·4f), where V(Ni) denotes the set of nodes of Ni. © 2004 Published by Elsevier B.V."



Katharina Huber,
Michael Langton,
David Penny,
Vincent Moulton and
Mike Hendy. Spectronet: A package for computing spectra and median networks. In ABIO, Vol. 1(3):159161, 2004. Keywords: from splits, median network, phylogenetic network, phylogeny, Program Spectronet, software, split, visualization. Note: http://citeseer.ist.psu.edu/631776.html.
Toggle abstract
Spectronet is a package that uses various methods for exploring and visualising complex evolutionary signals. Given an alignment in NEXUS format, the package works by computing a collection of weighted splits or bipartitions of the taxa and then allows the user to interactively analyse the resulting collection using tools such as Lentoplots and median networks. The package is highly interactive and available for PCs.



Luay Nakhleh,
Tandy Warnow and
C. Randal Linder. Reconstructing reticulate evolution in species  theory and practice. In RECOMB04, Pages 337346, 2004. Keywords: from rooted trees, galled tree, phylogenetic network, phylogeny, polynomial, Program SPNet, reconstruction, software. Note: http://www.cs.rice.edu/~nakhleh/Papers/144nakhleh.pdf.



Mike Hallett,
Jens Lagergren and
Ali Tofigh. Simultaneous Identification of Duplications and Lateral Transfers. In RECOMB04, Pages 347356, 2004. Keywords: duplication, explicit network, FPT, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.nada.kth.se/~jensl/p164hallett.pdf.



Pawel Górecki. Reconciliation problems for duplication, loss and horizontal gene transfer. In RECOMB04, Pages 316325, 2004. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://ai.stanford.edu/~serafim/CS374_2004/Papers/Gorecki_Reconciliation.pdf.







Luay Nakhleh,
Jerry Sun,
Tandy Warnow,
C. Randal Linder,
Bernard M. E. Moret and
Anna Tholse. Towards the Development of Computational Tools for Evaluating Phylogenetic Network Reconstruction Methods. In PSB03, 2003. Keywords: distance between networks, evaluation, phylogenetic network, phylogeny, polynomial, tripartition distance. Note: http://www.cs.rice.edu/~nakhleh/Papers/psb03.pdf.







Pawel Górecki. Single step reconciliation algorithm for duplication, loss and horizontal gene transfer model. In ECCB03, 2003. Keywords: duplication, explicit network, from rooted trees, from species tree, lateral gene transfer, NP complete, parsimony, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://www.inra.fr/eccb2003/posters/pdf/short/S_gorecki.ps.



David Bryant and
Vincent Moulton. NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks. In WABI02, Vol. 2452:375391 of LNCS, springer, 2002. Keywords: abstract network, circular split system, from distances, NeighborNet, phylogenetic network, phylogeny, Program SplitsTree, reconstruction, split network. Note: http://dx.doi.org/10.1007/3540457844_28.











Lusheng Wang,
Kaizhong Zhang and
Louxin Zhang. Perfect phylogenetic networks with recombination. In SAC01, Pages 4650, 2001. Keywords: from sequences, galled tree, NP complete, perfect, phylogenetic network, phylogeny, polynomial, recombination, reconstruction. Note: http://dx.doi.org/10.1145/372202.372271.







 