|
Andreas Spillner,
Binh T. Nguyen and
Vincent Moulton. Constructing and Drawing Regular Planar Split Networks. In TCBB, Vol. 9(2):395-407, 2012. Keywords: abstract network, from splits, phylogenetic network, phylogeny, reconstruction, visualization. Note: slides and presentation available at http://www.newton.ac.uk/programmes/PLG/seminars/062111501.html.
Toggle abstract
"Split networks are commonly used to visualize collections of bipartitions, also called splits, of a finite set. Such collections arise, for example, in evolutionary studies. Split networks can be viewed as a generalization of phylogenetic trees and may be generated using the SplitsTree package. Recently, the NeighborNet method for generating split networks has become rather popular, in part because it is guaranteed to always generate a circular split system, which can always be displayed by a planar split network. Even so, labels must be placed on the "outside" of the network, which might be problematic in some applications. To help circumvent this problem, it can be helpful to consider so-called flat split systems, which can be displayed by planar split networks where labels are allowed on the inside of the network too. Here, we present a new algorithm that is guaranteed to compute a minimal planar split network displaying a flat split system in polynomial time, provided the split system is given in a certain format. We will also briefly discuss two heuristics that could be useful for analyzing phylogeographic data and that allow the computation of flat split systems in this format in polynomial time. © 2006 IEEE."
|
|
|
Andreas Spillner,
Binh T. Nguyen and
Vincent Moulton. Computing phylogenetic diversity for split systems. In TCBB, Vol. 5(2):235-244, 2008. Keywords: abstract network, diversity, phylogenetic network, phylogeny, split. Note: http://dx.doi.org/10.1109/TCBB.2007.70260, slides available at http://www.newton.cam.ac.uk/webseminars/pg+ws/2007/plg/plgw01/0906/spillner/.
Toggle abstract
"In conservation biology it is a central problem to measure, predict, and preserve biodiversity as species face extinction. In 1992 Faith proposed measuring the diversity of a collection of species in terms of their relationships on a phylogenetic tree, and to use this information to identify collections of species with high diversity. Here we are interested in some variants of the resulting optimization problem that arise when considering species whose evolution is better represented by a network rather than a tree. More specifically, we consider the problem of computing phylogenetic diversity relative to a split system on a collection of species of size $n$. We show that for general split systems this problem is NP-hard. In addition we provide some efficient algorithms for some special classes of split systems, in particular presenting an optimal $O(n)$ time algorithm for phylogenetic trees and an $O(nlog n + n k)$ time algorithm for choosing an optimal subset of size $k$ relative to a circular split system. © 2006 IEEE."
|
|
|
|