|
Katharina Huber and
Vincent Moulton. Encoding and Constructing 1-Nested Phylogenetic Networks with Trinets. In ALG, Vol. 66(3):714-738, 2013. Keywords: explicit network, from subnetworks, from trinets, phylogenetic network, phylogeny, reconstruction, uniqueness. Note: http://arxiv.org/abs/1110.0728.
Toggle abstract
"Phylogenetic networks are a generalization of phylogenetic trees that are used in biology to represent reticulate or non-treelike evolution. Recently, several algorithms have been developed which aim to construct phylogenetic networks from biological data using triplets, i.e. binary phylogenetic trees on 3-element subsets of a given set of species. However, a fundamental problem with this approach is that the triplets displayed by a phylogenetic network do not necessarily uniquely determine or encode the network. Here we propose an alternative approach to encoding and constructing phylogenetic networks, which uses phylogenetic networks on 3-element subsets of a set, or trinets, rather than triplets. More specifically, we show that for a special, well-studied type of phylogenetic network called a 1-nested network, the trinets displayed by a 1-nested network always encode the network. We also present an efficient algorithm for deciding whether a dense set of trinets (i.e. one that contains a trinet on every 3-element subset of a set) can be displayed by a 1-nested network or not and, if so, constructs that network. In addition, we discuss some potential new directions that this new approach opens up for constructing and comparing phylogenetic networks. © 2012 Springer Science+Business Media, LLC."
|
|
|
Leo van Iersel and
Vincent Moulton. Trinets encode tree-child and level-2 phylogenetic networks. In JOMB, Vol. 68(7):1707-1729, 2014. Keywords: explicit network, from subnetworks, from trinets, level k phylogenetic network, phylogenetic network, phylogeny, reconstruction. Note: http://arxiv.org/abs/1210.0362.
Toggle abstract
"Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that level-1 phylogenetic networks are encoded by their trinets, and also conjectured that all "recoverable" rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2 networks and binary tree-child networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets. © 2013 Springer-Verlag Berlin Heidelberg."
|
|
|
Katharina Huber,
Leo van Iersel,
Vincent Moulton and
Taoyang Wu. How much information is needed to infer reticulate evolutionary histories? In Systematic Biology, Vol. 64(1):102-111, 2015. Keywords: explicit network, from network, from rooted trees, from subnetworks, from trinets, identifiability, phylogenetic network, phylogeny, reconstruction, uniqueness. Note: http://dx.doi.org/10.1093/sysbio/syu076.
|
|
|
Katharina Huber,
Leo van Iersel,
Vincent Moulton,
Celine Scornavacca and
Taoyang Wu. Reconstructing phylogenetic level-1 networks from nondense binet and trinet sets. In ALG, Vol. 77(1):173-200, 2017. Keywords: explicit network, FPT, from binets, from subnetworks, from trinets, NP complete, phylogenetic network, phylogeny, polynomial, reconstruction. Note: http://arxiv.org/abs/1411.6804.
|
|
|
James Oldman,
Taoyang Wu,
Leo van Iersel and
Vincent Moulton. TriLoNet: Piecing together small networks to reconstruct reticulate evolutionary histories. In MBE, Vol. 33(8):2151-2162, 2016. Keywords: explicit network, from subnetworks, from trinets, galled tree, phylogenetic network, phylogeny, Program LEV1ATHAN, Program TriLoNet, reconstruction.
|
|
|
|
|
Leo van Iersel,
Vincent Moulton,
Eveline De Swart and
Taoyang Wu. Binets: fundamental building blocks for phylogenetic networks. In BMB, Vol. 79(5):1135-1154, 2017. Keywords: approximation, explicit network, from binets, from subnetworks, galled tree, level k phylogenetic network, NP complete, phylogenetic network, phylogeny, reconstruction. Note: http://dx.doi.org/10.1007/s11538-017-0275-4.
|
|
|
Katharina Huber,
Vincent Moulton,
Charles Semple and
Taoyang Wu. Quarnet inference rules for level-1 networks. In BMB, Vol. 80:2137-2153, 2018. Keywords: explicit network, from quarnets, from subnetworks, galled tree, level k phylogenetic network, phylogenetic network, phylogeny, reconstruction. Note: https://arxiv.org/abs/1711.06720.
|
|
|
Yukihiro Murakami,
Leo van Iersel,
Remie Janssen,
Mark Jones and
Vincent Moulton. Reconstructing Tree-Child Networks from Reticulate-Edge-Deleted Subnetworks. In BMB, Vol. 81:3823-3863, 2019. Keywords: from subnetworks, level k phylogenetic network, phylogenetic network, phylogeny, reconstruction, tree-child network, uniqueness, valid network. Note: https://doi.org/10.1007/s11538-019-00641-w.
|
|
|
|
|
|