|
Stephen J. Willson. Properties of normal phylogenetic networks. In BMB, Vol. 72(2):340-358, 2010. Keywords: normal network, phylogenetic network, phylogeny, regular network. Note: http://www.public.iastate.edu/~swillson/RestrictionsOnNetworkspap9.pdf, slides available at http://www.newton.cam.ac.uk/webseminars/pg+ws/2007/plg/plgw01/0904/willson/.
Toggle abstract
"A phylogenetic network is a rooted acyclic digraph with vertices corresponding to taxa. Let X denote a set of vertices containing the root, the leaves, and all vertices of outdegree 1. Regard X as the set of vertices on which measurements such as DNA can be made. A vertex is called normal if it has one parent, and hybrid if it has more than one parent. The network is called normal if it has no redundant arcs and also from every vertex there is a directed path to a member of X such that all vertices after the first are normal. This paper studies properties of normal networks. Under a simple model of inheritance that allows homoplasies only at hybrid vertices, there is essentially unique determination of the genomes at all vertices by the genomes at members of X if and only if the network is normal. This model is a limiting case of more standard models of inheritance when the substitution rate is sufficiently low. Various mathematical properties of normal networks are described. These properties include that the number of vertices grows at most quadratically with the number of leaves and that the number of hybrid vertices grows at most linearly with the number of leaves. © 2009 Society for Mathematical Biology."
|
|
|
Leo van Iersel,
Charles Semple and
Mike Steel. Locating a tree in a phylogenetic network. In IPL, Vol. 110(23), 2010. Keywords: cluster containment, explicit network, from network, level k phylogenetic network, normal network, NP complete, phylogenetic network, polynomial, regular network, time consistent network, tree containment, tree sibling network, tree-child network. Note: http://arxiv.org/abs/1006.3122.
Toggle abstract
"Phylogenetic trees and networks are leaf-labelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NP-complete in general. In this article, we consider the restriction of these problems to several well-studied classes of phylogenetic networks. We show that Tree Containment is polynomial-time solvable for normal networks, for binary tree-child networks, and for level-k networks. On the other hand, we show that, even for tree-sibling, time-consistent, regular networks, both Tree Containment and Cluster Containment remain NP-complete. © 2010 Elsevier B.V. All rights reserved."
|
|
|