Publications related to 'normal network' : A phylogenetic network is normal if from any node we can reach at least one leaf going only through tree nodes (i.e. going through no reticulation node).

Order by: Type  Year











Maxime Morgado. Propriétés structurelles et relations des classes de réseaux phylogénétiques. Master's thesis, ENS Cachan, 2015. Keywords: compressed network, distinctcluster network, explicit network, galled network, galled tree, level k phylogenetic network, nested network, normal network, phylogenetic network, phylogeny, regular network, spread, tree child network, tree containment, tree sibling network, treebased network, unicyclic network.






Paul Cordue,
Simone Linz and
Charles Semple. Phylogenetic Networks that Display a Tree Twice. In BMB, Vol. 76(10):26642679, 2014. Keywords: from rooted trees, normal network, phylogenetic network, phylogeny, reconstruction, tree child network. Note: http://www.math.canterbury.ac.nz/~c.semple/papers/CLS14.pdf.
Toggle abstract
"In the last decade, the use of phylogenetic networks to analyze the evolution of species whose past is likely to include reticulation events, such as horizontal gene transfer or hybridization, has gained popularity among evolutionary biologists. Nevertheless, the evolution of a particular gene can generally be described without reticulation events and therefore be represented by a phylogenetic tree. While this is not in contrast to each other, it places emphasis on the necessity of algorithms that analyze and summarize the treelike information that is contained in a phylogenetic network. We contribute to the toolbox of such algorithms by investigating the question of whether or not a phylogenetic network embeds a tree twice and give a quadratictime algorithm to solve this problem for a class of networks that is more general than treechild networks. © 2014, Society for Mathematical Biology."






Stephen J. Willson. Reconstruction of certain phylogenetic networks from their treeaverage distances. In BMB, Vol. 75(10):18401878, 2013. Keywords: explicit network, from distances, galled tree, normal network, phylogenetic network, phylogeny, unicyclic network. Note: http://www.public.iastate.edu/~swillson/TreeAverageReconPaper9.pdf.
Toggle abstract
"Trees are commonly utilized to describe the evolutionary history of a collection of biological species, in which case the trees are called phylogenetic trees. Often these are reconstructed from data by making use of distances between extant species corresponding to the leaves of the tree. Because of increased recognition of the possibility of hybridization events, more attention is being given to the use of phylogenetic networks that are not necessarily trees. This paper describes the reconstruction of certain such networks from the treeaverage distances between the leaves. For a certain class of phylogenetic networks, a polynomialtime method is presented to reconstruct the network from the treeaverage distances. The method is proved to work if there is a single reticulation cycle. © 2013 Society for Mathematical Biology."






Stephen J. Willson. Treeaverage distances on certain phylogenetic networks have their weights uniquely determined. In ALMOB, Vol. 7(13), 2012. Keywords: from distances, from network, normal network, phylogenetic network, phylogeny, reconstruction, tree child network. Note: hhttp://www.public.iastate.edu/~swillson/TreeAverageDis10All.pdf.
Toggle abstract
"A phylogenetic network N has vertices corresponding to species and arcs corresponding to direct genetic inheritance from the species at the tail to the species at the head. Measurements of DNA are often made on species in the leaf set, and one seeks to infer properties of the network, possibly including the graph itself. In the case of phylogenetic trees, distances between extant species are frequently used to infer the phylogenetic trees by methods such as neighborjoining.This paper proposes a treeaverage distance for networks more general than trees. The notion requires a weight on each arc measuring the genetic change along the arc. For each displayed tree the distance between two leaves is the sum of the weights along the path joining them. At a hybrid vertex, each character is inherited from one of its parents. We will assume that for each hybrid there is a probability that the inheritance of a character is from a specified parent. Assume that the inheritance events at different hybrids are independent. Then for each displayed tree there will be a probability that the inheritance of a given character follows the tree; this probability may be interpreted as the probability of the tree. The treeaverage distance between the leaves is defined to be the expected value of their distance in the displayed trees.For a class of rooted networks that includes rooted trees, it is shown that the weights and the probabilities at each hybrid vertex can be calculated given the network and the treeaverage distances between the leaves. Hence these weights and probabilities are uniquely determined. The hypotheses on the networks include that hybrid vertices have indegree exactly 2 and that vertices that are not leaves have a treechild. © 2012 Willson; licensee BioMed Central Ltd."



Devin Robert Bickner. On normal networks. PhD thesis, Iowa State University, U.S.A., 2012. Keywords: distance between networks, explicit network, from network, from trees, normal network, phylogenetic network, phylogeny, polynomial, reconstruction, SPR distance. Note: http://gradworks.umi.com/3511361.pdf.






Stephen J. Willson. Properties of normal phylogenetic networks. In BMB, Vol. 72(2):340358, 2010. Keywords: normal network, phylogenetic network, phylogeny, regular network. Note: http://www.public.iastate.edu/~swillson/RestrictionsOnNetworkspap9.pdf, slides available at http://www.newton.cam.ac.uk/webseminars/pg+ws/2007/plg/plgw01/0904/willson/.
Toggle abstract
"A phylogenetic network is a rooted acyclic digraph with vertices corresponding to taxa. Let X denote a set of vertices containing the root, the leaves, and all vertices of outdegree 1. Regard X as the set of vertices on which measurements such as DNA can be made. A vertex is called normal if it has one parent, and hybrid if it has more than one parent. The network is called normal if it has no redundant arcs and also from every vertex there is a directed path to a member of X such that all vertices after the first are normal. This paper studies properties of normal networks. Under a simple model of inheritance that allows homoplasies only at hybrid vertices, there is essentially unique determination of the genomes at all vertices by the genomes at members of X if and only if the network is normal. This model is a limiting case of more standard models of inheritance when the substitution rate is sufficiently low. Various mathematical properties of normal networks are described. These properties include that the number of vertices grows at most quadratically with the number of leaves and that the number of hybrid vertices grows at most linearly with the number of leaves. © 2009 Society for Mathematical Biology."



Leo van Iersel,
Charles Semple and
Mike Steel. Locating a tree in a phylogenetic network. In IPL, Vol. 110(23), 2010. Keywords: cluster containment, explicit network, from network, level k phylogenetic network, normal network, NP complete, phylogenetic network, polynomial, regular network, time consistent network, tree child network, tree containment, tree sibling network. Note: http://arxiv.org/abs/1006.3122.
Toggle abstract
"Phylogenetic trees and networks are leaflabelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NPcomplete in general. In this article, we consider the restriction of these problems to several wellstudied classes of phylogenetic networks. We show that Tree Containment is polynomialtime solvable for normal networks, for binary treechild networks, and for levelk networks. On the other hand, we show that, even for treesibling, timeconsistent, regular networks, both Tree Containment and Cluster Containment remain NPcomplete. © 2010 Elsevier B.V. All rights reserved."





