





Leo van Iersel,
Steven Kelk,
Giorgios Stamoulis,
Leen Stougie and
Olivier Boes. On unrooted and rootuncertain variants of several wellknown phylogenetic network problems. In ALG, Vol. 80(11):29933022, 2018. Keywords: explicit network, FPT, from network, from unrooted trees, NP complete, phylogenetic network, phylogeny, reconstruction, tree containment. Note: https://hal.inria.fr/hal01599716.



Mathias Weller. LinearTime Tree Containment in Phylogenetic Networks. In RECOMBCG18, Springer, 2018. Keywords: explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, reconstruction, reticulationvisible network, tree containment. Note: https://arxiv.org/abs/1702.06364.



Andreas Gunawan. Solving the Tree Containment Problem for Reticulationvisible Networks in Linear Time. In AlCoB18, Vol. 10849:2436 of LNCS, Springer, 2018. Keywords: explicit network, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: https://arxiv.org/abs/1702.04088.



Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Solving the Tree Containment Problem in Linear Time for Nearly Stable Phylogenetic Networks. In DAM, Vol. 246:6279, 2018. Keywords: explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://halupecupem.archivesouvertes.fr/hal01575001/en/.






Andreas Gunawan,
Bhaskar DasGupta and
Louxin Zhang. A decomposition theorem and two algorithms for reticulationvisible networks. In Information and Computation, Vol. 252:161175, 2017. Keywords: cluster containment, explicit network, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: https://www.cs.uic.edu/~dasgupta/resume/publ/papers/Infor_Comput_IC4848_final.pdf.






Katharina Huber,
Vincent Moulton,
Mike Steel and
Taoyang Wu. Folding and unfolding phylogenetic trees and networks. In JOMB, Vol. 73(6):17611780, 2016. Keywords: compressed network, explicit network, FUstable network, NP complete, phylogenetic network, phylogeny, tree containment, tree sibling network. Note: http://arxiv.org/abs/1506.04438.



Andreas Gunawan,
Bhaskar DasGupta and
Louxin Zhang. Locating a Tree in a ReticulationVisible Network in Cubic Time. In RECOMB2016, Vol. 9649:266 of LNBI, Springer, 2016. Keywords: cluster containment, explicit network, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, reticulationvisible network, tree containment. Note: http://arxiv.org/abs/1507.02119.



Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time. In IWOCA15, Vol. 9538:197208 of LNCS, springer, 2016. Keywords: explicit network, from network, from rooted trees, genetically stable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://halupecupem.archivesouvertes.fr/hal01226035 .





Philippe Gambette,
Leo van Iersel,
Steven Kelk,
Fabio Pardi and
Celine Scornavacca. Do branch lengths help to locate a tree in a phylogenetic network? In BMB, Vol. 78(9):17731795, 2016. Keywords: branch length, explicit network, FPT, from network, from rooted trees, NP complete, phylogenetic network, phylogeny, pseudopolynomial, time consistent network, tree containment, tree sibling network. Note: http://arxiv.org/abs/1607.06285.








Philippe Gambette,
Andreas Gunawan,
Anthony Labarre,
Stéphane Vialette and
Louxin Zhang. Locating a Tree in A Phylogenetic Network in Quadratic Time. In RECOMB15, Vol. 9029:96107 of LNCS, Springer, 2015. Keywords: evaluation, explicit network, from network, from rooted trees, genetically stable network, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment. Note: https://hal.archivesouvertes.fr/hal01116231/en.



Jittat Fakcharoenphol,
Tanee Kumpijit and
Attakorn Putwattana. A Faster Algorithm for the Tree Containment Problem for Binary Nearly Stable Phylogenetic Networks. In Proceedings of the The 12th International Joint Conference on Computer Science and Software Engineering (JCSSE'15), Pages 337342, IEEE, 2015. Keywords: dynamic programming, explicit network, from network, from rooted trees, nearlystable network, phylogenetic network, phylogeny, polynomial, tree containment.



Maxime Morgado. Propriétés structurelles et relations des classes de réseaux phylogénétiques. Master's thesis, ENS Cachan, 2015. Keywords: compressed network, distinctcluster network, explicit network, galled network, galled tree, level k phylogenetic network, nested network, normal network, phylogenetic network, phylogeny, regular network, spread, tree child network, tree containment, tree sibling network, treebased network, unicyclic network.






Leo van Iersel,
Charles Semple and
Mike Steel. Locating a tree in a phylogenetic network. In IPL, Vol. 110(23), 2010. Keywords: cluster containment, explicit network, from network, level k phylogenetic network, normal network, NP complete, phylogenetic network, polynomial, regular network, time consistent network, tree child network, tree containment, tree sibling network. Note: http://arxiv.org/abs/1006.3122.
Toggle abstract
"Phylogenetic trees and networks are leaflabelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NPcomplete in general. In this article, we consider the restriction of these problems to several wellstudied classes of phylogenetic networks. We show that Tree Containment is polynomialtime solvable for normal networks, for binary treechild networks, and for levelk networks. On the other hand, we show that, even for treesibling, timeconsistent, regular networks, both Tree Containment and Cluster Containment remain NPcomplete. © 2010 Elsevier B.V. All rights reserved."






Iyad A. Kanj,
Luay Nakhleh,
Cuong Than and
Ge Xia. Seeing the Trees and Their Branches in the Network is Hard. In TCS, Vol. 401:153164, 2008. Keywords: evaluation, from network, from rooted trees, NP complete, phylogenetic network, phylogeny, tree containment. Note: http://www.cs.rice.edu/~nakhleh/Papers/tcs08.pdf.








Luay Nakhleh and
LiSan Wang. Phylogenetic Networks, Trees, and Clusters. In IWBRA05, Vol. 3515:919926 of LNCS, springer, 2005. Keywords: cluster containment, evaluation, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, tree child network, tree containment. Note: http://www.cs.rice.edu/~nakhleh/Papers/NakhlehWang.pdf.



Luay Nakhleh and
LiSan Wang. Phylogenetic Networks: Properties and Relationship to Trees and Clusters. In TCSB2, Vol. 3680:8299 of LNCS, springer, 2005. Keywords: cluster containment, evaluation, from clusters, from network, from rooted trees, phylogenetic network, phylogeny, polynomial, tree child network, tree containment. Note: http://www.cs.rice.edu/~nakhleh/Papers/LNCS_TCSB05.pdf.



